1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
use crate::cmp::Ordering; use crate::ops::Try; use super::super::LoopState; use super::super::{Chain, Cycle, Copied, Cloned, Enumerate, Filter, FilterMap, Fuse}; use super::super::{Flatten, FlatMap}; use super::super::{Inspect, Map, Peekable, Scan, Skip, SkipWhile, StepBy, Take, TakeWhile, Rev}; use super::super::{Zip, Sum, Product, FromIterator}; fn _assert_is_object_safe(_: &dyn Iterator<Item=()>) {} /// An interface for dealing with iterators. /// /// This is the main iterator trait. For more about the concept of iterators /// generally, please see the [module-level documentation]. In particular, you /// may want to know how to [implement `Iterator`][impl]. /// /// [module-level documentation]: index.html /// [impl]: index.html#implementing-iterator #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( on( _Self="[std::ops::Range<Idx>; 1]", label="if you meant to iterate between two values, remove the square brackets", note="`[start..end]` is an array of one `Range`; you might have meant to have a `Range` \ without the brackets: `start..end`" ), on( _Self="[std::ops::RangeFrom<Idx>; 1]", label="if you meant to iterate from a value onwards, remove the square brackets", note="`[start..]` is an array of one `RangeFrom`; you might have meant to have a \ `RangeFrom` without the brackets: `start..`, keeping in mind that iterating over an \ unbounded iterator will run forever unless you `break` or `return` from within the \ loop" ), on( _Self="[std::ops::RangeTo<Idx>; 1]", label="if you meant to iterate until a value, remove the square brackets and add a \ starting value", note="`[..end]` is an array of one `RangeTo`; you might have meant to have a bounded \ `Range` without the brackets: `0..end`" ), on( _Self="[std::ops::RangeInclusive<Idx>; 1]", label="if you meant to iterate between two values, remove the square brackets", note="`[start..=end]` is an array of one `RangeInclusive`; you might have meant to have a \ `RangeInclusive` without the brackets: `start..=end`" ), on( _Self="[std::ops::RangeToInclusive<Idx>; 1]", label="if you meant to iterate until a value (including it), remove the square brackets \ and add a starting value", note="`[..=end]` is an array of one `RangeToInclusive`; you might have meant to have a \ bounded `RangeInclusive` without the brackets: `0..=end`" ), on( _Self="std::ops::RangeTo<Idx>", label="if you meant to iterate until a value, add a starting value", note="`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \ bounded `Range`: `0..end`" ), on( _Self="std::ops::RangeToInclusive<Idx>", label="if you meant to iterate until a value (including it), add a starting value", note="`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \ to have a bounded `RangeInclusive`: `0..=end`" ), on( _Self="&str", label="`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" ), on( _Self="std::string::String", label="`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`" ), on( _Self="[]", label="borrow the array with `&` or call `.iter()` on it to iterate over it", note="arrays are not iterators, but slices like the following are: `&[1, 2, 3]`" ), on( _Self="{integral}", note="if you want to iterate between `start` until a value `end`, use the exclusive range \ syntax `start..end` or the inclusive range syntax `start..=end`" ), label="`{Self}` is not an iterator", message="`{Self}` is not an iterator" )] #[doc(spotlight)] #[must_use = "iterators are lazy and do nothing unless consumed"] pub trait Iterator { /// The type of the elements being iterated over. #[stable(feature = "rust1", since = "1.0.0")] type Item; /// Advances the iterator and returns the next value. /// /// Returns [`None`] when iteration is finished. Individual iterator /// implementations may choose to resume iteration, and so calling `next()` /// again may or may not eventually start returning [`Some(Item)`] again at some /// point. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`Some(Item)`]: ../../std/option/enum.Option.html#variant.Some /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// // A call to next() returns the next value... /// assert_eq!(Some(&1), iter.next()); /// assert_eq!(Some(&2), iter.next()); /// assert_eq!(Some(&3), iter.next()); /// /// // ... and then None once it's over. /// assert_eq!(None, iter.next()); /// /// // More calls may or may not return `None`. Here, they always will. /// assert_eq!(None, iter.next()); /// assert_eq!(None, iter.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn next(&mut self) -> Option<Self::Item>; /// Returns the bounds on the remaining length of the iterator. /// /// Specifically, `size_hint()` returns a tuple where the first element /// is the lower bound, and the second element is the upper bound. /// /// The second half of the tuple that is returned is an [`Option`]`<`[`usize`]`>`. /// A [`None`] here means that either there is no known upper bound, or the /// upper bound is larger than [`usize`]. /// /// # Implementation notes /// /// It is not enforced that an iterator implementation yields the declared /// number of elements. A buggy iterator may yield less than the lower bound /// or more than the upper bound of elements. /// /// `size_hint()` is primarily intended to be used for optimizations such as /// reserving space for the elements of the iterator, but must not be /// trusted to e.g., omit bounds checks in unsafe code. An incorrect /// implementation of `size_hint()` should not lead to memory safety /// violations. /// /// That said, the implementation should provide a correct estimation, /// because otherwise it would be a violation of the trait's protocol. /// /// The default implementation returns `(0, `[`None`]`)` which is correct for any /// iterator. /// /// [`usize`]: ../../std/primitive.usize.html /// [`Option`]: ../../std/option/enum.Option.html /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// let iter = a.iter(); /// /// assert_eq!((3, Some(3)), iter.size_hint()); /// ``` /// /// A more complex example: /// /// ``` /// // The even numbers from zero to ten. /// let iter = (0..10).filter(|x| x % 2 == 0); /// /// // We might iterate from zero to ten times. Knowing that it's five /// // exactly wouldn't be possible without executing filter(). /// assert_eq!((0, Some(10)), iter.size_hint()); /// /// // Let's add five more numbers with chain() /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20); /// /// // now both bounds are increased by five /// assert_eq!((5, Some(15)), iter.size_hint()); /// ``` /// /// Returning `None` for an upper bound: /// /// ``` /// // an infinite iterator has no upper bound /// // and the maximum possible lower bound /// let iter = 0..; /// /// assert_eq!((usize::max_value(), None), iter.size_hint()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn size_hint(&self) -> (usize, Option<usize>) { (0, None) } /// Consumes the iterator, counting the number of iterations and returning it. /// /// This method will evaluate the iterator until its [`next`] returns /// [`None`]. Once [`None`] is encountered, `count()` returns the number of /// times it called [`next`]. /// /// [`next`]: #tymethod.next /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so counting elements of /// an iterator with more than [`usize::MAX`] elements either produces the /// wrong result or panics. If debug assertions are enabled, a panic is /// guaranteed. /// /// # Panics /// /// This function might panic if the iterator has more than [`usize::MAX`] /// elements. /// /// [`usize::MAX`]: ../../std/usize/constant.MAX.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.iter().count(), 3); /// /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().count(), 5); /// ``` #[inline] #[rustc_inherit_overflow_checks] #[stable(feature = "rust1", since = "1.0.0")] fn count(self) -> usize where Self: Sized { // Might overflow. self.fold(0, |cnt, _| cnt + 1) } /// Consumes the iterator, returning the last element. /// /// This method will evaluate the iterator until it returns [`None`]. While /// doing so, it keeps track of the current element. After [`None`] is /// returned, `last()` will then return the last element it saw. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.iter().last(), Some(&3)); /// /// let a = [1, 2, 3, 4, 5]; /// assert_eq!(a.iter().last(), Some(&5)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn last(self) -> Option<Self::Item> where Self: Sized { let mut last = None; for x in self { last = Some(x); } last } /// Returns the `n`th element of the iterator. /// /// Like most indexing operations, the count starts from zero, so `nth(0)` /// returns the first value, `nth(1)` the second, and so on. /// /// Note that all preceding elements, as well as the returned element, will be /// consumed from the iterator. That means that the preceding elements will be /// discarded, and also that calling `nth(0)` multiple times on the same iterator /// will return different elements. /// /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the /// iterator. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.iter().nth(1), Some(&2)); /// ``` /// /// Calling `nth()` multiple times doesn't rewind the iterator: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert_eq!(iter.nth(1), Some(&2)); /// assert_eq!(iter.nth(1), None); /// ``` /// /// Returning `None` if there are less than `n + 1` elements: /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.iter().nth(10), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn nth(&mut self, mut n: usize) -> Option<Self::Item> { for x in self { if n == 0 { return Some(x) } n -= 1; } None } /// Creates an iterator starting at the same point, but stepping by /// the given amount at each iteration. /// /// Note 1: The first element of the iterator will always be returned, /// regardless of the step given. /// /// Note 2: The time at which ignored elements are pulled is not fixed. /// `StepBy` behaves like the sequence `next(), nth(step-1), nth(step-1), …`, /// but is also free to behave like the sequence /// `advance_n_and_return_first(step), advance_n_and_return_first(step), …` /// Which way is used may change for some iterators for performance reasons. /// The second way will advance the iterator earlier and may consume more items. /// /// `advance_n_and_return_first` is the equivalent of: /// ``` /// fn advance_n_and_return_first<I>(iter: &mut I, total_step: usize) -> Option<I::Item> /// where /// I: Iterator, /// { /// let next = iter.next(); /// if total_step > 1 { /// iter.nth(total_step-2); /// } /// next /// } /// ``` /// /// # Panics /// /// The method will panic if the given step is `0`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [0, 1, 2, 3, 4, 5]; /// let mut iter = a.iter().step_by(2); /// /// assert_eq!(iter.next(), Some(&0)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), Some(&4)); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "iterator_step_by", since = "1.28.0")] fn step_by(self, step: usize) -> StepBy<Self> where Self: Sized { StepBy::new(self, step) } /// Takes two iterators and creates a new iterator over both in sequence. /// /// `chain()` will return a new iterator which will first iterate over /// values from the first iterator and then over values from the second /// iterator. /// /// In other words, it links two iterators together, in a chain. 🔗 /// /// # Examples /// /// Basic usage: /// /// ``` /// let a1 = [1, 2, 3]; /// let a2 = [4, 5, 6]; /// /// let mut iter = a1.iter().chain(a2.iter()); /// /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), Some(&3)); /// assert_eq!(iter.next(), Some(&4)); /// assert_eq!(iter.next(), Some(&5)); /// assert_eq!(iter.next(), Some(&6)); /// assert_eq!(iter.next(), None); /// ``` /// /// Since the argument to `chain()` uses [`IntoIterator`], we can pass /// anything that can be converted into an [`Iterator`], not just an /// [`Iterator`] itself. For example, slices (`&[T]`) implement /// [`IntoIterator`], and so can be passed to `chain()` directly: /// /// [`IntoIterator`]: trait.IntoIterator.html /// [`Iterator`]: trait.Iterator.html /// /// ``` /// let s1 = &[1, 2, 3]; /// let s2 = &[4, 5, 6]; /// /// let mut iter = s1.iter().chain(s2); /// /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), Some(&3)); /// assert_eq!(iter.next(), Some(&4)); /// assert_eq!(iter.next(), Some(&5)); /// assert_eq!(iter.next(), Some(&6)); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter> where Self: Sized, U: IntoIterator<Item=Self::Item>, { Chain::new(self, other.into_iter()) } /// 'Zips up' two iterators into a single iterator of pairs. /// /// `zip()` returns a new iterator that will iterate over two other /// iterators, returning a tuple where the first element comes from the /// first iterator, and the second element comes from the second iterator. /// /// In other words, it zips two iterators together, into a single one. /// /// If either iterator returns [`None`], [`next`] from the zipped iterator /// will return [`None`]. If the first iterator returns [`None`], `zip` will /// short-circuit and `next` will not be called on the second iterator. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a1 = [1, 2, 3]; /// let a2 = [4, 5, 6]; /// /// let mut iter = a1.iter().zip(a2.iter()); /// /// assert_eq!(iter.next(), Some((&1, &4))); /// assert_eq!(iter.next(), Some((&2, &5))); /// assert_eq!(iter.next(), Some((&3, &6))); /// assert_eq!(iter.next(), None); /// ``` /// /// Since the argument to `zip()` uses [`IntoIterator`], we can pass /// anything that can be converted into an [`Iterator`], not just an /// [`Iterator`] itself. For example, slices (`&[T]`) implement /// [`IntoIterator`], and so can be passed to `zip()` directly: /// /// [`IntoIterator`]: trait.IntoIterator.html /// [`Iterator`]: trait.Iterator.html /// /// ``` /// let s1 = &[1, 2, 3]; /// let s2 = &[4, 5, 6]; /// /// let mut iter = s1.iter().zip(s2); /// /// assert_eq!(iter.next(), Some((&1, &4))); /// assert_eq!(iter.next(), Some((&2, &5))); /// assert_eq!(iter.next(), Some((&3, &6))); /// assert_eq!(iter.next(), None); /// ``` /// /// `zip()` is often used to zip an infinite iterator to a finite one. /// This works because the finite iterator will eventually return [`None`], /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]: /// /// ``` /// let enumerate: Vec<_> = "foo".chars().enumerate().collect(); /// /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect(); /// /// assert_eq!((0, 'f'), enumerate[0]); /// assert_eq!((0, 'f'), zipper[0]); /// /// assert_eq!((1, 'o'), enumerate[1]); /// assert_eq!((1, 'o'), zipper[1]); /// /// assert_eq!((2, 'o'), enumerate[2]); /// assert_eq!((2, 'o'), zipper[2]); /// ``` /// /// [`enumerate`]: trait.Iterator.html#method.enumerate /// [`next`]: ../../std/iter/trait.Iterator.html#tymethod.next /// [`None`]: ../../std/option/enum.Option.html#variant.None #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter> where Self: Sized, U: IntoIterator { Zip::new(self, other.into_iter()) } /// Takes a closure and creates an iterator which calls that closure on each /// element. /// /// `map()` transforms one iterator into another, by means of its argument: /// something that implements [`FnMut`]. It produces a new iterator which /// calls this closure on each element of the original iterator. /// /// If you are good at thinking in types, you can think of `map()` like this: /// If you have an iterator that gives you elements of some type `A`, and /// you want an iterator of some other type `B`, you can use `map()`, /// passing a closure that takes an `A` and returns a `B`. /// /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is /// lazy, it is best used when you're already working with other iterators. /// If you're doing some sort of looping for a side effect, it's considered /// more idiomatic to use [`for`] than `map()`. /// /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for /// [`FnMut`]: ../../std/ops/trait.FnMut.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter().map(|x| 2 * x); /// /// assert_eq!(iter.next(), Some(2)); /// assert_eq!(iter.next(), Some(4)); /// assert_eq!(iter.next(), Some(6)); /// assert_eq!(iter.next(), None); /// ``` /// /// If you're doing some sort of side effect, prefer [`for`] to `map()`: /// /// ``` /// # #![allow(unused_must_use)] /// // don't do this: /// (0..5).map(|x| println!("{}", x)); /// /// // it won't even execute, as it is lazy. Rust will warn you about this. /// /// // Instead, use for: /// for x in 0..5 { /// println!("{}", x); /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn map<B, F>(self, f: F) -> Map<Self, F> where Self: Sized, F: FnMut(Self::Item) -> B, { Map::new(self, f) } /// Calls a closure on each element of an iterator. /// /// This is equivalent to using a [`for`] loop on the iterator, although /// `break` and `continue` are not possible from a closure. It's generally /// more idiomatic to use a `for` loop, but `for_each` may be more legible /// when processing items at the end of longer iterator chains. In some /// cases `for_each` may also be faster than a loop, because it will use /// internal iteration on adaptors like `Chain`. /// /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::sync::mpsc::channel; /// /// let (tx, rx) = channel(); /// (0..5).map(|x| x * 2 + 1) /// .for_each(move |x| tx.send(x).unwrap()); /// /// let v: Vec<_> = rx.iter().collect(); /// assert_eq!(v, vec![1, 3, 5, 7, 9]); /// ``` /// /// For such a small example, a `for` loop may be cleaner, but `for_each` /// might be preferable to keep a functional style with longer iterators: /// /// ``` /// (0..5).flat_map(|x| x * 100 .. x * 110) /// .enumerate() /// .filter(|&(i, x)| (i + x) % 3 == 0) /// .for_each(|(i, x)| println!("{}:{}", i, x)); /// ``` #[inline] #[stable(feature = "iterator_for_each", since = "1.21.0")] fn for_each<F>(self, mut f: F) where Self: Sized, F: FnMut(Self::Item), { self.fold((), move |(), item| f(item)); } /// Creates an iterator which uses a closure to determine if an element /// should be yielded. /// /// The closure must return `true` or `false`. `filter()` creates an /// iterator which calls this closure on each element. If the closure /// returns `true`, then the element is returned. If the closure returns /// `false`, it will try again, and call the closure on the next element, /// seeing if it passes the test. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [0i32, 1, 2]; /// /// let mut iter = a.iter().filter(|x| x.is_positive()); /// /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), None); /// ``` /// /// Because the closure passed to `filter()` takes a reference, and many /// iterators iterate over references, this leads to a possibly confusing /// situation, where the type of the closure is a double reference: /// /// ``` /// let a = [0, 1, 2]; /// /// let mut iter = a.iter().filter(|x| **x > 1); // need two *s! /// /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), None); /// ``` /// /// It's common to instead use destructuring on the argument to strip away /// one: /// /// ``` /// let a = [0, 1, 2]; /// /// let mut iter = a.iter().filter(|&x| *x > 1); // both & and * /// /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), None); /// ``` /// /// or both: /// /// ``` /// let a = [0, 1, 2]; /// /// let mut iter = a.iter().filter(|&&x| x > 1); // two &s /// /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), None); /// ``` /// /// of these layers. #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn filter<P>(self, predicate: P) -> Filter<Self, P> where Self: Sized, P: FnMut(&Self::Item) -> bool, { Filter::new(self, predicate) } /// Creates an iterator that both filters and maps. /// /// The closure must return an [`Option<T>`]. `filter_map` creates an /// iterator which calls this closure on each element. If the closure /// returns [`Some(element)`][`Some`], then that element is returned. If the /// closure returns [`None`], it will try again, and call the closure on the /// next element, seeing if it will return [`Some`]. /// /// Why `filter_map` and not just [`filter`] and [`map`]? The key is in this /// part: /// /// [`filter`]: #method.filter /// [`map`]: #method.map /// /// > If the closure returns [`Some(element)`][`Some`], then that element is returned. /// /// In other words, it removes the [`Option<T>`] layer automatically. If your /// mapping is already returning an [`Option<T>`] and you want to skip over /// [`None`]s, then `filter_map` is much, much nicer to use. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = ["1", "lol", "3", "NaN", "5"]; /// /// let mut iter = a.iter().filter_map(|s| s.parse().ok()); /// /// assert_eq!(iter.next(), Some(1)); /// assert_eq!(iter.next(), Some(3)); /// assert_eq!(iter.next(), Some(5)); /// assert_eq!(iter.next(), None); /// ``` /// /// Here's the same example, but with [`filter`] and [`map`]: /// /// ``` /// let a = ["1", "lol", "3", "NaN", "5"]; /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap()); /// assert_eq!(iter.next(), Some(1)); /// assert_eq!(iter.next(), Some(3)); /// assert_eq!(iter.next(), Some(5)); /// assert_eq!(iter.next(), None); /// ``` /// /// [`Option<T>`]: ../../std/option/enum.Option.html /// [`Some`]: ../../std/option/enum.Option.html#variant.Some /// [`None`]: ../../std/option/enum.Option.html#variant.None #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> where Self: Sized, F: FnMut(Self::Item) -> Option<B>, { FilterMap::new(self, f) } /// Creates an iterator which gives the current iteration count as well as /// the next value. /// /// The iterator returned yields pairs `(i, val)`, where `i` is the /// current index of iteration and `val` is the value returned by the /// iterator. /// /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a /// different sized integer, the [`zip`] function provides similar /// functionality. /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so enumerating more than /// [`usize::MAX`] elements either produces the wrong result or panics. If /// debug assertions are enabled, a panic is guaranteed. /// /// # Panics /// /// The returned iterator might panic if the to-be-returned index would /// overflow a [`usize`]. /// /// [`usize::MAX`]: ../../std/usize/constant.MAX.html /// [`usize`]: ../../std/primitive.usize.html /// [`zip`]: #method.zip /// /// # Examples /// /// ``` /// let a = ['a', 'b', 'c']; /// /// let mut iter = a.iter().enumerate(); /// /// assert_eq!(iter.next(), Some((0, &'a'))); /// assert_eq!(iter.next(), Some((1, &'b'))); /// assert_eq!(iter.next(), Some((2, &'c'))); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn enumerate(self) -> Enumerate<Self> where Self: Sized { Enumerate::new(self) } /// Creates an iterator which can use `peek` to look at the next element of /// the iterator without consuming it. /// /// Adds a [`peek`] method to an iterator. See its documentation for /// more information. /// /// Note that the underlying iterator is still advanced when [`peek`] is /// called for the first time: In order to retrieve the next element, /// [`next`] is called on the underlying iterator, hence any side effects (i.e. /// anything other than fetching the next value) of the [`next`] method /// will occur. /// /// [`peek`]: struct.Peekable.html#method.peek /// [`next`]: ../../std/iter/trait.Iterator.html#tymethod.next /// /// # Examples /// /// Basic usage: /// /// ``` /// let xs = [1, 2, 3]; /// /// let mut iter = xs.iter().peekable(); /// /// // peek() lets us see into the future /// assert_eq!(iter.peek(), Some(&&1)); /// assert_eq!(iter.next(), Some(&1)); /// /// assert_eq!(iter.next(), Some(&2)); /// /// // we can peek() multiple times, the iterator won't advance /// assert_eq!(iter.peek(), Some(&&3)); /// assert_eq!(iter.peek(), Some(&&3)); /// /// assert_eq!(iter.next(), Some(&3)); /// /// // after the iterator is finished, so is peek() /// assert_eq!(iter.peek(), None); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn peekable(self) -> Peekable<Self> where Self: Sized { Peekable::new(self) } /// Creates an iterator that [`skip`]s elements based on a predicate. /// /// [`skip`]: #method.skip /// /// `skip_while()` takes a closure as an argument. It will call this /// closure on each element of the iterator, and ignore elements /// until it returns `false`. /// /// After `false` is returned, `skip_while()`'s job is over, and the /// rest of the elements are yielded. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [-1i32, 0, 1]; /// /// let mut iter = a.iter().skip_while(|x| x.is_negative()); /// /// assert_eq!(iter.next(), Some(&0)); /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), None); /// ``` /// /// Because the closure passed to `skip_while()` takes a reference, and many /// iterators iterate over references, this leads to a possibly confusing /// situation, where the type of the closure is a double reference: /// /// ``` /// let a = [-1, 0, 1]; /// /// let mut iter = a.iter().skip_while(|x| **x < 0); // need two *s! /// /// assert_eq!(iter.next(), Some(&0)); /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), None); /// ``` /// /// Stopping after an initial `false`: /// /// ``` /// let a = [-1, 0, 1, -2]; /// /// let mut iter = a.iter().skip_while(|x| **x < 0); /// /// assert_eq!(iter.next(), Some(&0)); /// assert_eq!(iter.next(), Some(&1)); /// /// // while this would have been false, since we already got a false, /// // skip_while() isn't used any more /// assert_eq!(iter.next(), Some(&-2)); /// /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> where Self: Sized, P: FnMut(&Self::Item) -> bool, { SkipWhile::new(self, predicate) } /// Creates an iterator that yields elements based on a predicate. /// /// `take_while()` takes a closure as an argument. It will call this /// closure on each element of the iterator, and yield elements /// while it returns `true`. /// /// After `false` is returned, `take_while()`'s job is over, and the /// rest of the elements are ignored. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [-1i32, 0, 1]; /// /// let mut iter = a.iter().take_while(|x| x.is_negative()); /// /// assert_eq!(iter.next(), Some(&-1)); /// assert_eq!(iter.next(), None); /// ``` /// /// Because the closure passed to `take_while()` takes a reference, and many /// iterators iterate over references, this leads to a possibly confusing /// situation, where the type of the closure is a double reference: /// /// ``` /// let a = [-1, 0, 1]; /// /// let mut iter = a.iter().take_while(|x| **x < 0); // need two *s! /// /// assert_eq!(iter.next(), Some(&-1)); /// assert_eq!(iter.next(), None); /// ``` /// /// Stopping after an initial `false`: /// /// ``` /// let a = [-1, 0, 1, -2]; /// /// let mut iter = a.iter().take_while(|x| **x < 0); /// /// assert_eq!(iter.next(), Some(&-1)); /// /// // We have more elements that are less than zero, but since we already /// // got a false, take_while() isn't used any more /// assert_eq!(iter.next(), None); /// ``` /// /// Because `take_while()` needs to look at the value in order to see if it /// should be included or not, consuming iterators will see that it is /// removed: /// /// ``` /// let a = [1, 2, 3, 4]; /// let mut iter = a.iter(); /// /// let result: Vec<i32> = iter.by_ref() /// .take_while(|n| **n != 3) /// .cloned() /// .collect(); /// /// assert_eq!(result, &[1, 2]); /// /// let result: Vec<i32> = iter.cloned().collect(); /// /// assert_eq!(result, &[4]); /// ``` /// /// The `3` is no longer there, because it was consumed in order to see if /// the iteration should stop, but wasn't placed back into the iterator. #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> where Self: Sized, P: FnMut(&Self::Item) -> bool, { TakeWhile::new(self, predicate) } /// Creates an iterator that skips the first `n` elements. /// /// After they have been consumed, the rest of the elements are yielded. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter().skip(2); /// /// assert_eq!(iter.next(), Some(&3)); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn skip(self, n: usize) -> Skip<Self> where Self: Sized { Skip::new(self, n) } /// Creates an iterator that yields its first `n` elements. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter().take(2); /// /// assert_eq!(iter.next(), Some(&1)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), None); /// ``` /// /// `take()` is often used with an infinite iterator, to make it finite: /// /// ``` /// let mut iter = (0..).take(3); /// /// assert_eq!(iter.next(), Some(0)); /// assert_eq!(iter.next(), Some(1)); /// assert_eq!(iter.next(), Some(2)); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn take(self, n: usize) -> Take<Self> where Self: Sized, { Take::new(self, n) } /// An iterator adaptor similar to [`fold`] that holds internal state and /// produces a new iterator. /// /// [`fold`]: #method.fold /// /// `scan()` takes two arguments: an initial value which seeds the internal /// state, and a closure with two arguments, the first being a mutable /// reference to the internal state and the second an iterator element. /// The closure can assign to the internal state to share state between /// iterations. /// /// On iteration, the closure will be applied to each element of the /// iterator and the return value from the closure, an [`Option`], is /// yielded by the iterator. /// /// [`Option`]: ../../std/option/enum.Option.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter().scan(1, |state, &x| { /// // each iteration, we'll multiply the state by the element /// *state = *state * x; /// /// // then, we'll yield the negation of the state /// Some(-*state) /// }); /// /// assert_eq!(iter.next(), Some(-1)); /// assert_eq!(iter.next(), Some(-2)); /// assert_eq!(iter.next(), Some(-6)); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F> where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>, { Scan::new(self, initial_state, f) } /// Creates an iterator that works like map, but flattens nested structure. /// /// The [`map`] adapter is very useful, but only when the closure /// argument produces values. If it produces an iterator instead, there's /// an extra layer of indirection. `flat_map()` will remove this extra layer /// on its own. /// /// You can think of `flat_map(f)` as the semantic equivalent /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`. /// /// Another way of thinking about `flat_map()`: [`map`]'s closure returns /// one item for each element, and `flat_map()`'s closure returns an /// iterator for each element. /// /// [`map`]: #method.map /// [`flatten`]: #method.flatten /// /// # Examples /// /// Basic usage: /// /// ``` /// let words = ["alpha", "beta", "gamma"]; /// /// // chars() returns an iterator /// let merged: String = words.iter() /// .flat_map(|s| s.chars()) /// .collect(); /// assert_eq!(merged, "alphabetagamma"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U, { FlatMap::new(self, f) } /// Creates an iterator that flattens nested structure. /// /// This is useful when you have an iterator of iterators or an iterator of /// things that can be turned into iterators and you want to remove one /// level of indirection. /// /// # Examples /// /// Basic usage: /// /// ``` /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]]; /// let flattened = data.into_iter().flatten().collect::<Vec<u8>>(); /// assert_eq!(flattened, &[1, 2, 3, 4, 5, 6]); /// ``` /// /// Mapping and then flattening: /// /// ``` /// let words = ["alpha", "beta", "gamma"]; /// /// // chars() returns an iterator /// let merged: String = words.iter() /// .map(|s| s.chars()) /// .flatten() /// .collect(); /// assert_eq!(merged, "alphabetagamma"); /// ``` /// /// You can also rewrite this in terms of [`flat_map()`], which is preferable /// in this case since it conveys intent more clearly: /// /// ``` /// let words = ["alpha", "beta", "gamma"]; /// /// // chars() returns an iterator /// let merged: String = words.iter() /// .flat_map(|s| s.chars()) /// .collect(); /// assert_eq!(merged, "alphabetagamma"); /// ``` /// /// Flattening once only removes one level of nesting: /// /// ``` /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]; /// /// let d2 = d3.iter().flatten().collect::<Vec<_>>(); /// assert_eq!(d2, [&[1, 2], &[3, 4], &[5, 6], &[7, 8]]); /// /// let d1 = d3.iter().flatten().flatten().collect::<Vec<_>>(); /// assert_eq!(d1, [&1, &2, &3, &4, &5, &6, &7, &8]); /// ``` /// /// Here we see that `flatten()` does not perform a "deep" flatten. /// Instead, only one level of nesting is removed. That is, if you /// `flatten()` a three-dimensional array the result will be /// two-dimensional and not one-dimensional. To get a one-dimensional /// structure, you have to `flatten()` again. /// /// [`flat_map()`]: #method.flat_map #[inline] #[stable(feature = "iterator_flatten", since = "1.29.0")] fn flatten(self) -> Flatten<Self> where Self: Sized, Self::Item: IntoIterator { Flatten::new(self) } /// Creates an iterator which ends after the first [`None`]. /// /// After an iterator returns [`None`], future calls may or may not yield /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a /// [`None`] is given, it will always return [`None`] forever. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`Some(T)`]: ../../std/option/enum.Option.html#variant.Some /// /// # Examples /// /// Basic usage: /// /// ``` /// // an iterator which alternates between Some and None /// struct Alternate { /// state: i32, /// } /// /// impl Iterator for Alternate { /// type Item = i32; /// /// fn next(&mut self) -> Option<i32> { /// let val = self.state; /// self.state = self.state + 1; /// /// // if it's even, Some(i32), else None /// if val % 2 == 0 { /// Some(val) /// } else { /// None /// } /// } /// } /// /// let mut iter = Alternate { state: 0 }; /// /// // we can see our iterator going back and forth /// assert_eq!(iter.next(), Some(0)); /// assert_eq!(iter.next(), None); /// assert_eq!(iter.next(), Some(2)); /// assert_eq!(iter.next(), None); /// /// // however, once we fuse it... /// let mut iter = iter.fuse(); /// /// assert_eq!(iter.next(), Some(4)); /// assert_eq!(iter.next(), None); /// /// // it will always return `None` after the first time. /// assert_eq!(iter.next(), None); /// assert_eq!(iter.next(), None); /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn fuse(self) -> Fuse<Self> where Self: Sized { Fuse::new(self) } /// Do something with each element of an iterator, passing the value on. /// /// When using iterators, you'll often chain several of them together. /// While working on such code, you might want to check out what's /// happening at various parts in the pipeline. To do that, insert /// a call to `inspect()`. /// /// It's more common for `inspect()` to be used as a debugging tool than to /// exist in your final code, but applications may find it useful in certain /// situations when errors need to be logged before being discarded. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 4, 2, 3]; /// /// // this iterator sequence is complex. /// let sum = a.iter() /// .cloned() /// .filter(|x| x % 2 == 0) /// .fold(0, |sum, i| sum + i); /// /// println!("{}", sum); /// /// // let's add some inspect() calls to investigate what's happening /// let sum = a.iter() /// .cloned() /// .inspect(|x| println!("about to filter: {}", x)) /// .filter(|x| x % 2 == 0) /// .inspect(|x| println!("made it through filter: {}", x)) /// .fold(0, |sum, i| sum + i); /// /// println!("{}", sum); /// ``` /// /// This will print: /// /// ```text /// 6 /// about to filter: 1 /// about to filter: 4 /// made it through filter: 4 /// about to filter: 2 /// made it through filter: 2 /// about to filter: 3 /// 6 /// ``` /// /// Logging errors before discarding them: /// /// ``` /// let lines = ["1", "2", "a"]; /// /// let sum: i32 = lines /// .iter() /// .map(|line| line.parse::<i32>()) /// .inspect(|num| { /// if let Err(ref e) = *num { /// println!("Parsing error: {}", e); /// } /// }) /// .filter_map(Result::ok) /// .sum(); /// /// println!("Sum: {}", sum); /// ``` /// /// This will print: /// /// ```text /// Parsing error: invalid digit found in string /// Sum: 3 /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn inspect<F>(self, f: F) -> Inspect<Self, F> where Self: Sized, F: FnMut(&Self::Item), { Inspect::new(self, f) } /// Borrows an iterator, rather than consuming it. /// /// This is useful to allow applying iterator adaptors while still /// retaining ownership of the original iterator. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let iter = a.iter(); /// /// let sum: i32 = iter.take(5).fold(0, |acc, i| acc + i ); /// /// assert_eq!(sum, 6); /// /// // if we try to use iter again, it won't work. The following line /// // gives "error: use of moved value: `iter` /// // assert_eq!(iter.next(), None); /// /// // let's try that again /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// // instead, we add in a .by_ref() /// let sum: i32 = iter.by_ref().take(2).fold(0, |acc, i| acc + i ); /// /// assert_eq!(sum, 3); /// /// // now this is just fine: /// assert_eq!(iter.next(), Some(&3)); /// assert_eq!(iter.next(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn by_ref(&mut self) -> &mut Self where Self: Sized { self } /// Transforms an iterator into a collection. /// /// `collect()` can take anything iterable, and turn it into a relevant /// collection. This is one of the more powerful methods in the standard /// library, used in a variety of contexts. /// /// The most basic pattern in which `collect()` is used is to turn one /// collection into another. You take a collection, call [`iter`] on it, /// do a bunch of transformations, and then `collect()` at the end. /// /// One of the keys to `collect()`'s power is that many things you might /// not think of as 'collections' actually are. For example, a [`String`] /// is a collection of [`char`]s. And a collection of /// [`Result<T, E>`][`Result`] can be thought of as single /// [`Result`]`<Collection<T>, E>`. See the examples below for more. /// /// Because `collect()` is so general, it can cause problems with type /// inference. As such, `collect()` is one of the few times you'll see /// the syntax affectionately known as the 'turbofish': `::<>`. This /// helps the inference algorithm understand specifically which collection /// you're trying to collect into. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let doubled: Vec<i32> = a.iter() /// .map(|&x| x * 2) /// .collect(); /// /// assert_eq!(vec![2, 4, 6], doubled); /// ``` /// /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because /// we could collect into, for example, a [`VecDeque<T>`] instead: /// /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html /// /// ``` /// use std::collections::VecDeque; /// /// let a = [1, 2, 3]; /// /// let doubled: VecDeque<i32> = a.iter().map(|&x| x * 2).collect(); /// /// assert_eq!(2, doubled[0]); /// assert_eq!(4, doubled[1]); /// assert_eq!(6, doubled[2]); /// ``` /// /// Using the 'turbofish' instead of annotating `doubled`: /// /// ``` /// let a = [1, 2, 3]; /// /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>(); /// /// assert_eq!(vec![2, 4, 6], doubled); /// ``` /// /// Because `collect()` only cares about what you're collecting into, you can /// still use a partial type hint, `_`, with the turbofish: /// /// ``` /// let a = [1, 2, 3]; /// /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>(); /// /// assert_eq!(vec![2, 4, 6], doubled); /// ``` /// /// Using `collect()` to make a [`String`]: /// /// ``` /// let chars = ['g', 'd', 'k', 'k', 'n']; /// /// let hello: String = chars.iter() /// .map(|&x| x as u8) /// .map(|x| (x + 1) as char) /// .collect(); /// /// assert_eq!("hello", hello); /// ``` /// /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to /// see if any of them failed: /// /// ``` /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")]; /// /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect(); /// /// // gives us the first error /// assert_eq!(Err("nope"), result); /// /// let results = [Ok(1), Ok(3)]; /// /// let result: Result<Vec<_>, &str> = results.iter().cloned().collect(); /// /// // gives us the list of answers /// assert_eq!(Ok(vec![1, 3]), result); /// ``` /// /// [`iter`]: ../../std/iter/trait.Iterator.html#tymethod.next /// [`String`]: ../../std/string/struct.String.html /// [`char`]: ../../std/primitive.char.html /// [`Result`]: ../../std/result/enum.Result.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"] fn collect<B: FromIterator<Self::Item>>(self) -> B where Self: Sized { FromIterator::from_iter(self) } /// Consumes an iterator, creating two collections from it. /// /// The predicate passed to `partition()` can return `true`, or `false`. /// `partition()` returns a pair, all of the elements for which it returned /// `true`, and all of the elements for which it returned `false`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let (even, odd): (Vec<i32>, Vec<i32>) = a /// .iter() /// .partition(|&n| n % 2 == 0); /// /// assert_eq!(even, vec![2]); /// assert_eq!(odd, vec![1, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn partition<B, F>(self, mut f: F) -> (B, B) where Self: Sized, B: Default + Extend<Self::Item>, F: FnMut(&Self::Item) -> bool { let mut left: B = Default::default(); let mut right: B = Default::default(); for x in self { if f(&x) { left.extend(Some(x)) } else { right.extend(Some(x)) } } (left, right) } /// An iterator method that applies a function as long as it returns /// successfully, producing a single, final value. /// /// `try_fold()` takes two arguments: an initial value, and a closure with /// two arguments: an 'accumulator', and an element. The closure either /// returns successfully, with the value that the accumulator should have /// for the next iteration, or it returns failure, with an error value that /// is propagated back to the caller immediately (short-circuiting). /// /// The initial value is the value the accumulator will have on the first /// call. If applying the closure succeeded against every element of the /// iterator, `try_fold()` returns the final accumulator as success. /// /// Folding is useful whenever you have a collection of something, and want /// to produce a single value from it. /// /// # Note to Implementors /// /// Most of the other (forward) methods have default implementations in /// terms of this one, so try to implement this explicitly if it can /// do something better than the default `for` loop implementation. /// /// In particular, try to have this call `try_fold()` on the internal parts /// from which this iterator is composed. If multiple calls are needed, /// the `?` operator may be convenient for chaining the accumulator value /// along, but beware any invariants that need to be upheld before those /// early returns. This is a `&mut self` method, so iteration needs to be /// resumable after hitting an error here. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// // the checked sum of all of the elements of the array /// let sum = a.iter().try_fold(0i8, |acc, &x| acc.checked_add(x)); /// /// assert_eq!(sum, Some(6)); /// ``` /// /// Short-circuiting: /// /// ``` /// let a = [10, 20, 30, 100, 40, 50]; /// let mut it = a.iter(); /// /// // This sum overflows when adding the 100 element /// let sum = it.try_fold(0i8, |acc, &x| acc.checked_add(x)); /// assert_eq!(sum, None); /// /// // Because it short-circuited, the remaining elements are still /// // available through the iterator. /// assert_eq!(it.len(), 2); /// assert_eq!(it.next(), Some(&40)); /// ``` #[inline] #[stable(feature = "iterator_try_fold", since = "1.27.0")] fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Ok=B> { let mut accum = init; while let Some(x) = self.next() { accum = f(accum, x)?; } Try::from_ok(accum) } /// An iterator method that applies a fallible function to each item in the /// iterator, stopping at the first error and returning that error. /// /// This can also be thought of as the fallible form of [`for_each()`] /// or as the stateless version of [`try_fold()`]. /// /// [`for_each()`]: #method.for_each /// [`try_fold()`]: #method.try_fold /// /// # Examples /// /// ``` /// use std::fs::rename; /// use std::io::{stdout, Write}; /// use std::path::Path; /// /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"]; /// /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{}", x)); /// assert!(res.is_ok()); /// /// let mut it = data.iter().cloned(); /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old"))); /// assert!(res.is_err()); /// // It short-circuited, so the remaining items are still in the iterator: /// assert_eq!(it.next(), Some("stale_bread.json")); /// ``` #[inline] #[stable(feature = "iterator_try_fold", since = "1.27.0")] fn try_for_each<F, R>(&mut self, mut f: F) -> R where Self: Sized, F: FnMut(Self::Item) -> R, R: Try<Ok=()> { self.try_fold((), move |(), x| f(x)) } /// An iterator method that applies a function, producing a single, final value. /// /// `fold()` takes two arguments: an initial value, and a closure with two /// arguments: an 'accumulator', and an element. The closure returns the value that /// the accumulator should have for the next iteration. /// /// The initial value is the value the accumulator will have on the first /// call. /// /// After applying this closure to every element of the iterator, `fold()` /// returns the accumulator. /// /// This operation is sometimes called 'reduce' or 'inject'. /// /// Folding is useful whenever you have a collection of something, and want /// to produce a single value from it. /// /// Note: `fold()`, and similar methods that traverse the entire iterator, /// may not terminate for infinite iterators, even on traits for which a /// result is determinable in finite time. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// // the sum of all of the elements of the array /// let sum = a.iter().fold(0, |acc, x| acc + x); /// /// assert_eq!(sum, 6); /// ``` /// /// Let's walk through each step of the iteration here: /// /// | element | acc | x | result | /// |---------|-----|---|--------| /// | | 0 | | | /// | 1 | 0 | 1 | 1 | /// | 2 | 1 | 2 | 3 | /// | 3 | 3 | 3 | 6 | /// /// And so, our final result, `6`. /// /// It's common for people who haven't used iterators a lot to /// use a `for` loop with a list of things to build up a result. Those /// can be turned into `fold()`s: /// /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for /// /// ``` /// let numbers = [1, 2, 3, 4, 5]; /// /// let mut result = 0; /// /// // for loop: /// for i in &numbers { /// result = result + i; /// } /// /// // fold: /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x); /// /// // they're the same /// assert_eq!(result, result2); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn fold<B, F>(mut self, init: B, mut f: F) -> B where Self: Sized, F: FnMut(B, Self::Item) -> B, { self.try_fold(init, move |acc, x| Ok::<B, !>(f(acc, x))).unwrap() } /// Tests if every element of the iterator matches a predicate. /// /// `all()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, and if they all return /// `true`, then so does `all()`. If any of them return `false`, it /// returns `false`. /// /// `all()` is short-circuiting; in other words, it will stop processing /// as soon as it finds a `false`, given that no matter what else happens, /// the result will also be `false`. /// /// An empty iterator returns `true`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert!(a.iter().all(|&x| x > 0)); /// /// assert!(!a.iter().all(|&x| x > 2)); /// ``` /// /// Stopping at the first `false`: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert!(!iter.all(|&x| x != 2)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next(), Some(&3)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn all<F>(&mut self, mut f: F) -> bool where Self: Sized, F: FnMut(Self::Item) -> bool { self.try_for_each(move |x| { if f(x) { LoopState::Continue(()) } else { LoopState::Break(()) } }) == LoopState::Continue(()) } /// Tests if any element of the iterator matches a predicate. /// /// `any()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, and if any of them return /// `true`, then so does `any()`. If they all return `false`, it /// returns `false`. /// /// `any()` is short-circuiting; in other words, it will stop processing /// as soon as it finds a `true`, given that no matter what else happens, /// the result will also be `true`. /// /// An empty iterator returns `false`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert!(a.iter().any(|&x| x > 0)); /// /// assert!(!a.iter().any(|&x| x > 5)); /// ``` /// /// Stopping at the first `true`: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert!(iter.any(|&x| x != 2)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next(), Some(&2)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn any<F>(&mut self, mut f: F) -> bool where Self: Sized, F: FnMut(Self::Item) -> bool { self.try_for_each(move |x| { if f(x) { LoopState::Break(()) } else { LoopState::Continue(()) } }) == LoopState::Break(()) } /// Searches for an element of an iterator that satisfies a predicate. /// /// `find()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, and if any of them return /// `true`, then `find()` returns [`Some(element)`]. If they all return /// `false`, it returns [`None`]. /// /// `find()` is short-circuiting; in other words, it will stop processing /// as soon as the closure returns `true`. /// /// Because `find()` takes a reference, and many iterators iterate over /// references, this leads to a possibly confusing situation where the /// argument is a double reference. You can see this effect in the /// examples below, with `&&x`. /// /// [`Some(element)`]: ../../std/option/enum.Option.html#variant.Some /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2)); /// /// assert_eq!(a.iter().find(|&&x| x == 5), None); /// ``` /// /// Stopping at the first `true`: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert_eq!(iter.find(|&&x| x == 2), Some(&2)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next(), Some(&3)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> where Self: Sized, P: FnMut(&Self::Item) -> bool, { self.try_for_each(move |x| { if predicate(&x) { LoopState::Break(x) } else { LoopState::Continue(()) } }).break_value() } /// Applies function to the elements of iterator and returns /// the first non-none result. /// /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`. /// /// /// # Examples /// /// ``` /// let a = ["lol", "NaN", "2", "5"]; /// /// let first_number = a.iter().find_map(|s| s.parse().ok()); /// /// assert_eq!(first_number, Some(2)); /// ``` #[inline] #[stable(feature = "iterator_find_map", since = "1.30.0")] fn find_map<B, F>(&mut self, mut f: F) -> Option<B> where Self: Sized, F: FnMut(Self::Item) -> Option<B>, { self.try_for_each(move |x| { match f(x) { Some(x) => LoopState::Break(x), None => LoopState::Continue(()), } }).break_value() } /// Searches for an element in an iterator, returning its index. /// /// `position()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, and if one of them /// returns `true`, then `position()` returns [`Some(index)`]. If all of /// them return `false`, it returns [`None`]. /// /// `position()` is short-circuiting; in other words, it will stop /// processing as soon as it finds a `true`. /// /// # Overflow Behavior /// /// The method does no guarding against overflows, so if there are more /// than [`usize::MAX`] non-matching elements, it either produces the wrong /// result or panics. If debug assertions are enabled, a panic is /// guaranteed. /// /// # Panics /// /// This function might panic if the iterator has more than `usize::MAX` /// non-matching elements. /// /// [`Some(index)`]: ../../std/option/enum.Option.html#variant.Some /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`usize::MAX`]: ../../std/usize/constant.MAX.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert_eq!(a.iter().position(|&x| x == 2), Some(1)); /// /// assert_eq!(a.iter().position(|&x| x == 5), None); /// ``` /// /// Stopping at the first `true`: /// /// ``` /// let a = [1, 2, 3, 4]; /// /// let mut iter = a.iter(); /// /// assert_eq!(iter.position(|&x| x >= 2), Some(1)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next(), Some(&3)); /// /// // The returned index depends on iterator state /// assert_eq!(iter.position(|&x| x == 4), Some(0)); /// /// ``` #[inline] #[rustc_inherit_overflow_checks] #[stable(feature = "rust1", since = "1.0.0")] fn position<P>(&mut self, mut predicate: P) -> Option<usize> where Self: Sized, P: FnMut(Self::Item) -> bool, { // The addition might panic on overflow self.try_fold(0, move |i, x| { if predicate(x) { LoopState::Break(i) } else { LoopState::Continue(i + 1) } }).break_value() } /// Searches for an element in an iterator from the right, returning its /// index. /// /// `rposition()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, starting from the end, /// and if one of them returns `true`, then `rposition()` returns /// [`Some(index)`]. If all of them return `false`, it returns [`None`]. /// /// `rposition()` is short-circuiting; in other words, it will stop /// processing as soon as it finds a `true`. /// /// [`Some(index)`]: ../../std/option/enum.Option.html#variant.Some /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert_eq!(a.iter().rposition(|&x| x == 3), Some(2)); /// /// assert_eq!(a.iter().rposition(|&x| x == 5), None); /// ``` /// /// Stopping at the first `true`: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert_eq!(iter.rposition(|&x| x == 2), Some(1)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next(), Some(&1)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where P: FnMut(Self::Item) -> bool, Self: Sized + ExactSizeIterator + DoubleEndedIterator { // No need for an overflow check here, because `ExactSizeIterator` // implies that the number of elements fits into a `usize`. let n = self.len(); self.try_rfold(n, move |i, x| { let i = i - 1; if predicate(x) { LoopState::Break(i) } else { LoopState::Continue(i) } }).break_value() } /// Returns the maximum element of an iterator. /// /// If several elements are equally maximum, the last element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// let b: Vec<u32> = Vec::new(); /// /// assert_eq!(a.iter().max(), Some(&3)); /// assert_eq!(b.iter().max(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn max(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord { self.max_by(Ord::cmp) } /// Returns the minimum element of an iterator. /// /// If several elements are equally minimum, the first element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// let b: Vec<u32> = Vec::new(); /// /// assert_eq!(a.iter().min(), Some(&1)); /// assert_eq!(b.iter().min(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn min(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord { self.min_by(Ord::cmp) } /// Returns the element that gives the maximum value from the /// specified function. /// /// If several elements are equally maximum, the last element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().max_by_key(|x| x.abs()).unwrap(), -10); /// ``` #[inline] #[stable(feature = "iter_cmp_by_key", since = "1.6.0")] fn max_by_key<B: Ord, F>(self, mut f: F) -> Option<Self::Item> where Self: Sized, F: FnMut(&Self::Item) -> B, { // switch to y even if it is only equal, to preserve stability. select_fold1(self.map(|x| (f(&x), x)), |(x_p, _), (y_p, _)| x_p <= y_p).map(|(_, x)| x) } /// Returns the element that gives the maximum value with respect to the /// specified comparison function. /// /// If several elements are equally maximum, the last element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().max_by(|x, y| x.cmp(y)).unwrap(), 5); /// ``` #[inline] #[stable(feature = "iter_max_by", since = "1.15.0")] fn max_by<F>(self, mut compare: F) -> Option<Self::Item> where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering, { // switch to y even if it is only equal, to preserve stability. select_fold1(self, |x, y| compare(x, y) != Ordering::Greater) } /// Returns the element that gives the minimum value from the /// specified function. /// /// If several elements are equally minimum, the first element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().min_by_key(|x| x.abs()).unwrap(), 0); /// ``` #[stable(feature = "iter_cmp_by_key", since = "1.6.0")] fn min_by_key<B: Ord, F>(self, mut f: F) -> Option<Self::Item> where Self: Sized, F: FnMut(&Self::Item) -> B, { // only switch to y if it is strictly smaller, to preserve stability. select_fold1(self.map(|x| (f(&x), x)), |(x_p, _), (y_p, _)| x_p > y_p).map(|(_, x)| x) } /// Returns the element that gives the minimum value with respect to the /// specified comparison function. /// /// If several elements are equally minimum, the first element is /// returned. If the iterator is empty, [`None`] is returned. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// let a = [-3_i32, 0, 1, 5, -10]; /// assert_eq!(*a.iter().min_by(|x, y| x.cmp(y)).unwrap(), -10); /// ``` #[inline] #[stable(feature = "iter_min_by", since = "1.15.0")] fn min_by<F>(self, mut compare: F) -> Option<Self::Item> where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering, { // only switch to y if it is strictly smaller, to preserve stability. select_fold1(self, |x, y| compare(x, y) == Ordering::Greater) } /// Reverses an iterator's direction. /// /// Usually, iterators iterate from left to right. After using `rev()`, /// an iterator will instead iterate from right to left. /// /// This is only possible if the iterator has an end, so `rev()` only /// works on [`DoubleEndedIterator`]s. /// /// [`DoubleEndedIterator`]: trait.DoubleEndedIterator.html /// /// # Examples /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter().rev(); /// /// assert_eq!(iter.next(), Some(&3)); /// assert_eq!(iter.next(), Some(&2)); /// assert_eq!(iter.next(), Some(&1)); /// /// assert_eq!(iter.next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn rev(self) -> Rev<Self> where Self: Sized + DoubleEndedIterator { Rev::new(self) } /// Converts an iterator of pairs into a pair of containers. /// /// `unzip()` consumes an entire iterator of pairs, producing two /// collections: one from the left elements of the pairs, and one /// from the right elements. /// /// This function is, in some sense, the opposite of [`zip`]. /// /// [`zip`]: #method.zip /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [(1, 2), (3, 4)]; /// /// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip(); /// /// assert_eq!(left, [1, 3]); /// assert_eq!(right, [2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Iterator<Item=(A, B)>, { let mut ts: FromA = Default::default(); let mut us: FromB = Default::default(); self.for_each(|(t, u)| { ts.extend(Some(t)); us.extend(Some(u)); }); (ts, us) } /// Creates an iterator which copies all of its elements. /// /// This is useful when you have an iterator over `&T`, but you need an /// iterator over `T`. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let v_cloned: Vec<_> = a.iter().copied().collect(); /// /// // copied is the same as .map(|&x| x) /// let v_map: Vec<_> = a.iter().map(|&x| x).collect(); /// /// assert_eq!(v_cloned, vec![1, 2, 3]); /// assert_eq!(v_map, vec![1, 2, 3]); /// ``` #[stable(feature = "iter_copied", since = "1.36.0")] fn copied<'a, T: 'a>(self) -> Copied<Self> where Self: Sized + Iterator<Item=&'a T>, T: Copy { Copied::new(self) } /// Creates an iterator which [`clone`]s all of its elements. /// /// This is useful when you have an iterator over `&T`, but you need an /// iterator over `T`. /// /// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let v_cloned: Vec<_> = a.iter().cloned().collect(); /// /// // cloned is the same as .map(|&x| x), for integers /// let v_map: Vec<_> = a.iter().map(|&x| x).collect(); /// /// assert_eq!(v_cloned, vec![1, 2, 3]); /// assert_eq!(v_map, vec![1, 2, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn cloned<'a, T: 'a>(self) -> Cloned<Self> where Self: Sized + Iterator<Item=&'a T>, T: Clone { Cloned::new(self) } /// Repeats an iterator endlessly. /// /// Instead of stopping at [`None`], the iterator will instead start again, /// from the beginning. After iterating again, it will start at the /// beginning again. And again. And again. Forever. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut it = a.iter().cycle(); /// /// assert_eq!(it.next(), Some(&1)); /// assert_eq!(it.next(), Some(&2)); /// assert_eq!(it.next(), Some(&3)); /// assert_eq!(it.next(), Some(&1)); /// assert_eq!(it.next(), Some(&2)); /// assert_eq!(it.next(), Some(&3)); /// assert_eq!(it.next(), Some(&1)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] fn cycle(self) -> Cycle<Self> where Self: Sized + Clone { Cycle::new(self) } /// Sums the elements of an iterator. /// /// Takes each element, adds them together, and returns the result. /// /// An empty iterator returns the zero value of the type. /// /// # Panics /// /// When calling `sum()` and a primitive integer type is being returned, this /// method will panic if the computation overflows and debug assertions are /// enabled. /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// let sum: i32 = a.iter().sum(); /// /// assert_eq!(sum, 6); /// ``` #[stable(feature = "iter_arith", since = "1.11.0")] fn sum<S>(self) -> S where Self: Sized, S: Sum<Self::Item>, { Sum::sum(self) } /// Iterates over the entire iterator, multiplying all the elements /// /// An empty iterator returns the one value of the type. /// /// # Panics /// /// When calling `product()` and a primitive integer type is being returned, /// method will panic if the computation overflows and debug assertions are /// enabled. /// /// # Examples /// /// ``` /// fn factorial(n: u32) -> u32 { /// (1..=n).product() /// } /// assert_eq!(factorial(0), 1); /// assert_eq!(factorial(1), 1); /// assert_eq!(factorial(5), 120); /// ``` #[stable(feature = "iter_arith", since = "1.11.0")] fn product<P>(self) -> P where Self: Sized, P: Product<Self::Item>, { Product::product(self) } /// Lexicographically compares the elements of this `Iterator` with those /// of another. #[stable(feature = "iter_order", since = "1.5.0")] fn cmp<I>(mut self, other: I) -> Ordering where I: IntoIterator<Item = Self::Item>, Self::Item: Ord, Self: Sized, { let mut other = other.into_iter(); loop { let x = match self.next() { None => if other.next().is_none() { return Ordering::Equal } else { return Ordering::Less }, Some(val) => val, }; let y = match other.next() { None => return Ordering::Greater, Some(val) => val, }; match x.cmp(&y) { Ordering::Equal => (), non_eq => return non_eq, } } } /// Lexicographically compares the elements of this `Iterator` with those /// of another. #[stable(feature = "iter_order", since = "1.5.0")] fn partial_cmp<I>(mut self, other: I) -> Option<Ordering> where I: IntoIterator, Self::Item: PartialOrd<I::Item>, Self: Sized, { let mut other = other.into_iter(); loop { let x = match self.next() { None => if other.next().is_none() { return Some(Ordering::Equal) } else { return Some(Ordering::Less) }, Some(val) => val, }; let y = match other.next() { None => return Some(Ordering::Greater), Some(val) => val, }; match x.partial_cmp(&y) { Some(Ordering::Equal) => (), non_eq => return non_eq, } } } /// Determines if the elements of this `Iterator` are equal to those of /// another. #[stable(feature = "iter_order", since = "1.5.0")] fn eq<I>(mut self, other: I) -> bool where I: IntoIterator, Self::Item: PartialEq<I::Item>, Self: Sized, { let mut other = other.into_iter(); loop { let x = match self.next() { None => return other.next().is_none(), Some(val) => val, }; let y = match other.next() { None => return false, Some(val) => val, }; if x != y { return false } } } /// Determines if the elements of this `Iterator` are unequal to those of /// another. #[stable(feature = "iter_order", since = "1.5.0")] fn ne<I>(self, other: I) -> bool where I: IntoIterator, Self::Item: PartialEq<I::Item>, Self: Sized, { !self.eq(other) } /// Determines if the elements of this `Iterator` are lexicographically /// less than those of another. #[stable(feature = "iter_order", since = "1.5.0")] fn lt<I>(self, other: I) -> bool where I: IntoIterator, Self::Item: PartialOrd<I::Item>, Self: Sized, { self.partial_cmp(other) == Some(Ordering::Less) } /// Determines if the elements of this `Iterator` are lexicographically /// less or equal to those of another. #[stable(feature = "iter_order", since = "1.5.0")] fn le<I>(self, other: I) -> bool where I: IntoIterator, Self::Item: PartialOrd<I::Item>, Self: Sized, { match self.partial_cmp(other) { Some(Ordering::Less) | Some(Ordering::Equal) => true, _ => false, } } /// Determines if the elements of this `Iterator` are lexicographically /// greater than those of another. #[stable(feature = "iter_order", since = "1.5.0")] fn gt<I>(self, other: I) -> bool where I: IntoIterator, Self::Item: PartialOrd<I::Item>, Self: Sized, { self.partial_cmp(other) == Some(Ordering::Greater) } /// Determines if the elements of this `Iterator` are lexicographically /// greater than or equal to those of another. #[stable(feature = "iter_order", since = "1.5.0")] fn ge<I>(self, other: I) -> bool where I: IntoIterator, Self::Item: PartialOrd<I::Item>, Self: Sized, { match self.partial_cmp(other) { Some(Ordering::Greater) | Some(Ordering::Equal) => true, _ => false, } } /// Checks if the elements of this iterator are sorted. /// /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the /// iterator yields exactly zero or one element, `true` is returned. /// /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition /// implies that this function returns `false` if any two consecutive items are not /// comparable. /// /// # Examples /// /// ``` /// #![feature(is_sorted)] /// /// assert!([1, 2, 2, 9].iter().is_sorted()); /// assert!(![1, 3, 2, 4].iter().is_sorted()); /// assert!([0].iter().is_sorted()); /// assert!(std::iter::empty::<i32>().is_sorted()); /// assert!(![0.0, 1.0, std::f32::NAN].iter().is_sorted()); /// ``` #[inline] #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")] fn is_sorted(self) -> bool where Self: Sized, Self::Item: PartialOrd, { self.is_sorted_by(|a, b| a.partial_cmp(b)) } /// Checks if the elements of this iterator are sorted using the given comparator function. /// /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare` /// function to determine the ordering of two elements. Apart from that, it's equivalent to /// [`is_sorted`]; see its documentation for more information. /// /// [`is_sorted`]: trait.Iterator.html#method.is_sorted #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")] fn is_sorted_by<F>(mut self, mut compare: F) -> bool where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering> { let mut last = match self.next() { Some(e) => e, None => return true, }; while let Some(curr) = self.next() { if compare(&last, &curr) .map(|o| o == Ordering::Greater) .unwrap_or(true) { return false; } last = curr; } true } /// Checks if the elements of this iterator are sorted using the given key extraction /// function. /// /// Instead of comparing the iterator's elements directly, this function compares the keys of /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see /// its documentation for more information. /// /// [`is_sorted`]: trait.Iterator.html#method.is_sorted /// /// # Examples /// /// ``` /// #![feature(is_sorted)] /// /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len())); /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs())); /// ``` #[inline] #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")] fn is_sorted_by_key<F, K>(self, mut f: F) -> bool where Self: Sized, F: FnMut(&Self::Item) -> K, K: PartialOrd { self.is_sorted_by(|a, b| f(a).partial_cmp(&f(b))) } } /// Select an element from an iterator based on the given "comparison" /// function. /// /// This is an idiosyncratic helper to try to factor out the /// commonalities of {max,min}{,_by}. In particular, this avoids /// having to implement optimizations several times. #[inline] fn select_fold1<I, F>(mut it: I, mut f: F) -> Option<I::Item> where I: Iterator, F: FnMut(&I::Item, &I::Item) -> bool, { // start with the first element as our selection. This avoids // having to use `Option`s inside the loop, translating to a // sizeable performance gain (6x in one case). it.next().map(|first| { it.fold(first, |sel, x| if f(&sel, &x) { x } else { sel }) }) } #[stable(feature = "rust1", since = "1.0.0")] impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; fn next(&mut self) -> Option<I::Item> { (**self).next() } fn size_hint(&self) -> (usize, Option<usize>) { (**self).size_hint() } fn nth(&mut self, n: usize) -> Option<Self::Item> { (**self).nth(n) } }