1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
//! A dynamically-sized view into a contiguous sequence, `[T]`.
//!
//! *[See also the slice primitive type](../../std/primitive.slice.html).*
//!
//! Slices are a view into a block of memory represented as a pointer and a
//! length.
//!
//! ```
//! // slicing a Vec
//! let vec = vec![1, 2, 3];
//! let int_slice = &vec[..];
//! // coercing an array to a slice
//! let str_slice: &[&str] = &["one", "two", "three"];
//! ```
//!
//! Slices are either mutable or shared. The shared slice type is `&[T]`,
//! while the mutable slice type is `&mut [T]`, where `T` represents the element
//! type. For example, you can mutate the block of memory that a mutable slice
//! points to:
//!
//! ```
//! let x = &mut [1, 2, 3];
//! x[1] = 7;
//! assert_eq!(x, &[1, 7, 3]);
//! ```
//!
//! Here are some of the things this module contains:
//!
//! ## Structs
//!
//! There are several structs that are useful for slices, such as [`Iter`], which
//! represents iteration over a slice.
//!
//! ## Trait Implementations
//!
//! There are several implementations of common traits for slices. Some examples
//! include:
//!
//! * [`Clone`]
//! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
//! * [`Hash`] - for slices whose element type is [`Hash`].
//!
//! ## Iteration
//!
//! The slices implement `IntoIterator`. The iterator yields references to the
//! slice elements.
//!
//! ```
//! let numbers = &[0, 1, 2];
//! for n in numbers {
//!     println!("{} is a number!", n);
//! }
//! ```
//!
//! The mutable slice yields mutable references to the elements:
//!
//! ```
//! let mut scores = [7, 8, 9];
//! for score in &mut scores[..] {
//!     *score += 1;
//! }
//! ```
//!
//! This iterator yields mutable references to the slice's elements, so while
//! the element type of the slice is `i32`, the element type of the iterator is
//! `&mut i32`.
//!
//! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
//!   iterators.
//! * Further methods that return iterators are [`.split`], [`.splitn`],
//!   [`.chunks`], [`.windows`] and more.
//!
//! [`Clone`]: ../../std/clone/trait.Clone.html
//! [`Eq`]: ../../std/cmp/trait.Eq.html
//! [`Ord`]: ../../std/cmp/trait.Ord.html
//! [`Iter`]: struct.Iter.html
//! [`Hash`]: ../../std/hash/trait.Hash.html
//! [`.iter`]: ../../std/primitive.slice.html#method.iter
//! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut
//! [`.split`]: ../../std/primitive.slice.html#method.split
//! [`.splitn`]: ../../std/primitive.slice.html#method.splitn
//! [`.chunks`]: ../../std/primitive.slice.html#method.chunks
//! [`.windows`]: ../../std/primitive.slice.html#method.windows
#![stable(feature = "rust1", since = "1.0.0")]

// Many of the usings in this module are only used in the test configuration.
// It's cleaner to just turn off the unused_imports warning than to fix them.
#![cfg_attr(test, allow(unused_imports, dead_code))]

use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering::{self, Less};
use core::mem::{self, size_of};
use core::ptr;
use core::{u8, u16, u32};

use crate::borrow::ToOwned;
use crate::boxed::Box;
use crate::vec::Vec;

#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Chunks, Windows};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{Iter, IterMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{SplitMut, ChunksMut, Split};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut};
#[stable(feature = "slice_rsplit", since = "1.27.0")]
pub use core::slice::{RSplit, RSplitMut};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::slice::{from_raw_parts, from_raw_parts_mut};
#[stable(feature = "from_ref", since = "1.28.0")]
pub use core::slice::{from_ref, from_mut};
#[stable(feature = "slice_get_slice", since = "1.28.0")]
pub use core::slice::SliceIndex;
#[stable(feature = "chunks_exact", since = "1.31.0")]
pub use core::slice::{ChunksExact, ChunksExactMut};
#[stable(feature = "rchunks", since = "1.31.0")]
pub use core::slice::{RChunks, RChunksMut, RChunksExact, RChunksExactMut};

////////////////////////////////////////////////////////////////////////////////
// Basic slice extension methods
////////////////////////////////////////////////////////////////////////////////

// HACK(japaric) needed for the implementation of `vec!` macro during testing
// NB see the hack module in this file for more details
#[cfg(test)]
pub use hack::into_vec;

// HACK(japaric) needed for the implementation of `Vec::clone` during testing
// NB see the hack module in this file for more details
#[cfg(test)]
pub use hack::to_vec;

// HACK(japaric): With cfg(test) `impl [T]` is not available, these three
// functions are actually methods that are in `impl [T]` but not in
// `core::slice::SliceExt` - we need to supply these functions for the
// `test_permutations` test
mod hack {
    use core::mem;

    use crate::boxed::Box;
    use crate::vec::Vec;
    #[cfg(test)]
    use crate::string::ToString;

    pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> {
        unsafe {
            let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len());
            mem::forget(b);
            xs
        }
    }

    #[inline]
    pub fn to_vec<T>(s: &[T]) -> Vec<T>
        where T: Clone
    {
        let mut vector = Vec::with_capacity(s.len());
        vector.extend_from_slice(s);
        vector
    }
}

#[lang = "slice_alloc"]
#[cfg(not(test))]
impl<T> [T] {
    /// Sorts the slice.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case.
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable`](#method.sort_unstable).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5, 4, 1, -3, 2];
    ///
    /// v.sort();
    /// assert!(v == [-5, -3, 1, 2, 4]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort(&mut self)
        where T: Ord
    {
        merge_sort(self, |a, b| a.lt(b));
    }

    /// Sorts the slice with a comparator function.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and `O(n log n)` worst-case.
    ///
    /// The comparator function must define a total ordering for the elements in the slice. If
    /// the ordering is not total, the order of the elements is unspecified. An order is a
    /// total order if it is (for all `a`, `b` and `c`):
    ///
    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
    ///
    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
    ///
    /// ```
    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
    /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
    /// ```
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable_by`](#method.sort_unstable_by).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [5, 4, 1, 3, 2];
    /// v.sort_by(|a, b| a.cmp(b));
    /// assert!(v == [1, 2, 3, 4, 5]);
    ///
    /// // reverse sorting
    /// v.sort_by(|a, b| b.cmp(a));
    /// assert!(v == [5, 4, 3, 2, 1]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn sort_by<F>(&mut self, mut compare: F)
        where F: FnMut(&T, &T) -> Ordering
    {
        merge_sort(self, |a, b| compare(a, b) == Less);
    }

    /// Sorts the slice with a key extraction function.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and `O(m n log(m n))`
    /// worst-case, where the key function is `O(m)`.
    ///
    /// For expensive key functions (e.g. functions that are not simple property accesses or
    /// basic operations), [`sort_by_cached_key`](#method.sort_by_cached_key) is likely to be
    /// significantly faster, as it does not recompute element keys.
    ///
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
    /// sorting and it doesn't allocate auxiliary memory.
    /// See [`sort_unstable_by_key`](#method.sort_unstable_by_key).
    ///
    /// # Current implementation
    ///
    /// The current algorithm is an adaptive, iterative merge sort inspired by
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
    /// two or more sorted sequences concatenated one after another.
    ///
    /// Also, it allocates temporary storage half the size of `self`, but for short slices a
    /// non-allocating insertion sort is used instead.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5i32, 4, 1, -3, 2];
    ///
    /// v.sort_by_key(|k| k.abs());
    /// assert!(v == [1, 2, -3, 4, -5]);
    /// ```
    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
    #[inline]
    pub fn sort_by_key<K, F>(&mut self, mut f: F)
        where F: FnMut(&T) -> K, K: Ord
    {
        merge_sort(self, |a, b| f(a).lt(&f(b)));
    }

    /// Sorts the slice with a key extraction function.
    ///
    /// During sorting, the key function is called only once per element.
    ///
    /// This sort is stable (i.e., does not reorder equal elements) and `O(m n + n log n)`
    /// worst-case, where the key function is `O(m)`.
    ///
    /// For simple key functions (e.g., functions that are property accesses or
    /// basic operations), [`sort_by_key`](#method.sort_by_key) is likely to be
    /// faster.
    ///
    /// # Current implementation
    ///
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
    /// which combines the fast average case of randomized quicksort with the fast worst case of
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
    /// deterministic behavior.
    ///
    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
    /// length of the slice.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut v = [-5i32, 4, 32, -3, 2];
    ///
    /// v.sort_by_cached_key(|k| k.to_string());
    /// assert!(v == [-3, -5, 2, 32, 4]);
    /// ```
    ///
    /// [pdqsort]: https://github.com/orlp/pdqsort
    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
    #[inline]
    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
        where F: FnMut(&T) -> K, K: Ord
    {
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
        macro_rules! sort_by_key {
            ($t:ty, $slice:ident, $f:ident) => ({
                let mut indices: Vec<_> =
                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
                // The elements of `indices` are unique, as they are indexed, so any sort will be
                // stable with respect to the original slice. We use `sort_unstable` here because
                // it requires less memory allocation.
                indices.sort_unstable();
                for i in 0..$slice.len() {
                    let mut index = indices[i].1;
                    while (index as usize) < i {
                        index = indices[index as usize].1;
                    }
                    indices[i].1 = index;
                    $slice.swap(i, index as usize);
                }
            })
        }

        let sz_u8    = mem::size_of::<(K, u8)>();
        let sz_u16   = mem::size_of::<(K, u16)>();
        let sz_u32   = mem::size_of::<(K, u32)>();
        let sz_usize = mem::size_of::<(K, usize)>();

        let len = self.len();
        if len < 2 { return }
        if sz_u8  < sz_u16   && len <= ( u8::MAX as usize) { return sort_by_key!( u8, self, f) }
        if sz_u16 < sz_u32   && len <= (u16::MAX as usize) { return sort_by_key!(u16, self, f) }
        if sz_u32 < sz_usize && len <= (u32::MAX as usize) { return sort_by_key!(u32, self, f) }
        sort_by_key!(usize, self, f)
    }

    /// Copies `self` into a new `Vec`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = [10, 40, 30];
    /// let x = s.to_vec();
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[rustc_conversion_suggestion]
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn to_vec(&self) -> Vec<T>
        where T: Clone
    {
        // NB see hack module in this file
        hack::to_vec(self)
    }

    /// Converts `self` into a vector without clones or allocation.
    ///
    /// The resulting vector can be converted back into a box via
    /// `Vec<T>`'s `into_boxed_slice` method.
    ///
    /// # Examples
    ///
    /// ```
    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
    /// let x = s.into_vec();
    /// // `s` cannot be used anymore because it has been converted into `x`.
    ///
    /// assert_eq!(x, vec![10, 40, 30]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn into_vec(self: Box<Self>) -> Vec<T> {
        // NB see hack module in this file
        hack::into_vec(self)
    }

    /// Creates a vector by repeating a slice `n` times.
    ///
    /// # Panics
    ///
    /// This function will panic if the capacity would overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(repeat_generic_slice)]
    ///
    /// fn main() {
    ///     assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
    /// }
    /// ```
    ///
    /// A panic upon overflow:
    ///
    /// ```should_panic
    /// #![feature(repeat_generic_slice)]
    /// fn main() {
    ///     // this will panic at runtime
    ///     b"0123456789abcdef".repeat(usize::max_value());
    /// }
    /// ```
    #[unstable(feature = "repeat_generic_slice",
               reason = "it's on str, why not on slice?",
               issue = "48784")]
    pub fn repeat(&self, n: usize) -> Vec<T> where T: Copy {
        if n == 0 {
            return Vec::new();
        }

        // If `n` is larger than zero, it can be split as
        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
        // and `rem` is the remaining part of `n`.

        // Using `Vec` to access `set_len()`.
        let mut buf = Vec::with_capacity(self.len().checked_mul(n).expect("capacity overflow"));

        // `2^expn` repetition is done by doubling `buf` `expn`-times.
        buf.extend(self);
        {
            let mut m = n >> 1;
            // If `m > 0`, there are remaining bits up to the leftmost '1'.
            while m > 0 {
                // `buf.extend(buf)`:
                unsafe {
                    ptr::copy_nonoverlapping(
                        buf.as_ptr(),
                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
                        buf.len(),
                    );
                    // `buf` has capacity of `self.len() * n`.
                    let buf_len = buf.len();
                    buf.set_len(buf_len * 2);
                }

                m >>= 1;
            }
        }

        // `rem` (`= n - 2^expn`) repetition is done by copying
        // first `rem` repetitions from `buf` itself.
        let rem_len = self.len() * n - buf.len(); // `self.len() * rem`
        if rem_len > 0 {
            // `buf.extend(buf[0 .. rem_len])`:
            unsafe {
                // This is non-overlapping since `2^expn > rem`.
                ptr::copy_nonoverlapping(
                    buf.as_ptr(),
                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
                    rem_len,
                );
                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
                let buf_cap = buf.capacity();
                buf.set_len(buf_cap);
            }
        }
        buf
    }
}

#[lang = "slice_u8_alloc"]
#[cfg(not(test))]
impl [u8] {
    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII upper case equivalent.
    ///
    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
    ///
    /// [`make_ascii_uppercase`]: #method.make_ascii_uppercase
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_uppercase();
        me
    }

    /// Returns a vector containing a copy of this slice where each byte
    /// is mapped to its ASCII lower case equivalent.
    ///
    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
    /// but non-ASCII letters are unchanged.
    ///
    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
    ///
    /// [`make_ascii_lowercase`]: #method.make_ascii_lowercase
    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
    #[inline]
    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
        let mut me = self.to_vec();
        me.make_ascii_lowercase();
        me
    }
}

////////////////////////////////////////////////////////////////////////////////
// Extension traits for slices over specific kinds of data
////////////////////////////////////////////////////////////////////////////////
#[unstable(feature = "slice_concat_ext",
           reason = "trait should not have to exist",
           issue = "27747")]
/// An extension trait for concatenating slices
///
/// While this trait is unstable, the methods are stable. `SliceConcatExt` is
/// included in the [standard library prelude], so you can use [`join()`] and
/// [`concat()`] as if they existed on `[T]` itself.
///
/// [standard library prelude]: ../../std/prelude/index.html
/// [`join()`]: #tymethod.join
/// [`concat()`]: #tymethod.concat
pub trait SliceConcatExt<T: ?Sized> {
    #[unstable(feature = "slice_concat_ext",
               reason = "trait should not have to exist",
               issue = "27747")]
    /// The resulting type after concatenation
    type Output;

    /// Flattens a slice of `T` into a single value `Self::Output`.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].concat(), "helloworld");
    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn concat(&self) -> Self::Output;

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// assert_eq!(["hello", "world"].join(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
    /// ```
    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
    fn join(&self, sep: &T) -> Self::Output;

    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
    /// given separator between each.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(deprecated)]
    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
    fn connect(&self, sep: &T) -> Self::Output;
}

#[unstable(feature = "slice_concat_ext",
           reason = "trait should not have to exist",
           issue = "27747")]
impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] {
    type Output = Vec<T>;

    fn concat(&self) -> Vec<T> {
        let size = self.iter().map(|slice| slice.borrow().len()).sum();
        let mut result = Vec::with_capacity(size);
        for v in self {
            result.extend_from_slice(v.borrow())
        }
        result
    }

    fn join(&self, sep: &T) -> Vec<T> {
        let mut iter = self.iter();
        let first = match iter.next() {
            Some(first) => first,
            None => return vec![],
        };
        let size = self.iter().map(|slice| slice.borrow().len()).sum::<usize>() + self.len() - 1;
        let mut result = Vec::with_capacity(size);
        result.extend_from_slice(first.borrow());

        for v in iter {
            result.push(sep.clone());
            result.extend_from_slice(v.borrow())
        }
        result
    }

    fn connect(&self, sep: &T) -> Vec<T> {
        self.join(sep)
    }
}

////////////////////////////////////////////////////////////////////////////////
// Standard trait implementations for slices
////////////////////////////////////////////////////////////////////////////////

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Borrow<[T]> for Vec<T> {
    fn borrow(&self) -> &[T] {
        &self[..]
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BorrowMut<[T]> for Vec<T> {
    fn borrow_mut(&mut self) -> &mut [T] {
        &mut self[..]
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> ToOwned for [T] {
    type Owned = Vec<T>;
    #[cfg(not(test))]
    fn to_owned(&self) -> Vec<T> {
        self.to_vec()
    }

    #[cfg(test)]
    fn to_owned(&self) -> Vec<T> {
        hack::to_vec(self)
    }

    fn clone_into(&self, target: &mut Vec<T>) {
        // drop anything in target that will not be overwritten
        target.truncate(self.len());
        let len = target.len();

        // reuse the contained values' allocations/resources.
        target.clone_from_slice(&self[..len]);

        // target.len <= self.len due to the truncate above, so the
        // slice here is always in-bounds.
        target.extend_from_slice(&self[len..]);
    }
}

////////////////////////////////////////////////////////////////////////////////
// Sorting
////////////////////////////////////////////////////////////////////////////////

/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
    where F: FnMut(&T, &T) -> bool
{
    if v.len() >= 2 && is_less(&v[1], &v[0]) {
        unsafe {
            // There are three ways to implement insertion here:
            //
            // 1. Swap adjacent elements until the first one gets to its final destination.
            //    However, this way we copy data around more than is necessary. If elements are big
            //    structures (costly to copy), this method will be slow.
            //
            // 2. Iterate until the right place for the first element is found. Then shift the
            //    elements succeeding it to make room for it and finally place it into the
            //    remaining hole. This is a good method.
            //
            // 3. Copy the first element into a temporary variable. Iterate until the right place
            //    for it is found. As we go along, copy every traversed element into the slot
            //    preceding it. Finally, copy data from the temporary variable into the remaining
            //    hole. This method is very good. Benchmarks demonstrated slightly better
            //    performance than with the 2nd method.
            //
            // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
            let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));

            // Intermediate state of the insertion process is always tracked by `hole`, which
            // serves two purposes:
            // 1. Protects integrity of `v` from panics in `is_less`.
            // 2. Fills the remaining hole in `v` in the end.
            //
            // Panic safety:
            //
            // If `is_less` panics at any point during the process, `hole` will get dropped and
            // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
            // initially held exactly once.
            let mut hole = InsertionHole {
                src: &mut *tmp,
                dest: &mut v[1],
            };
            ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);

            for i in 2..v.len() {
                if !is_less(&v[i], &*tmp) {
                    break;
                }
                ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
                hole.dest = &mut v[i];
            }
            // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
        }
    }

    // When dropped, copies from `src` into `dest`.
    struct InsertionHole<T> {
        src: *mut T,
        dest: *mut T,
    }

    impl<T> Drop for InsertionHole<T> {
        fn drop(&mut self) {
            unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); }
        }
    }
}

/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
    where F: FnMut(&T, &T) -> bool
{
    let len = v.len();
    let v = v.as_mut_ptr();
    let v_mid = v.add(mid);
    let v_end = v.add(len);

    // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
    // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
    // copying the lesser (or greater) one into `v`.
    //
    // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
    // consumed first, then we must copy whatever is left of the shorter run into the remaining
    // hole in `v`.
    //
    // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
    // 1. Protects integrity of `v` from panics in `is_less`.
    // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
    //
    // Panic safety:
    //
    // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
    // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
    // object it initially held exactly once.
    let mut hole;

    if mid <= len - mid {
        // The left run is shorter.
        ptr::copy_nonoverlapping(v, buf, mid);
        hole = MergeHole {
            start: buf,
            end: buf.add(mid),
            dest: v,
        };

        // Initially, these pointers point to the beginnings of their arrays.
        let left = &mut hole.start;
        let mut right = v_mid;
        let out = &mut hole.dest;

        while *left < hole.end && right < v_end {
            // Consume the lesser side.
            // If equal, prefer the left run to maintain stability.
            let to_copy = if is_less(&*right, &**left) {
                get_and_increment(&mut right)
            } else {
                get_and_increment(left)
            };
            ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
        }
    } else {
        // The right run is shorter.
        ptr::copy_nonoverlapping(v_mid, buf, len - mid);
        hole = MergeHole {
            start: buf,
            end: buf.add(len - mid),
            dest: v_mid,
        };

        // Initially, these pointers point past the ends of their arrays.
        let left = &mut hole.dest;
        let right = &mut hole.end;
        let mut out = v_end;

        while v < *left && buf < *right {
            // Consume the greater side.
            // If equal, prefer the right run to maintain stability.
            let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
                decrement_and_get(left)
            } else {
                decrement_and_get(right)
            };
            ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
        }
    }
    // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
    // it will now be copied into the hole in `v`.

    unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
        let old = *ptr;
        *ptr = ptr.offset(1);
        old
    }

    unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
        *ptr = ptr.offset(-1);
        *ptr
    }

    // When dropped, copies the range `start..end` into `dest..`.
    struct MergeHole<T> {
        start: *mut T,
        end: *mut T,
        dest: *mut T,
    }

    impl<T> Drop for MergeHole<T> {
        fn drop(&mut self) {
            // `T` is not a zero-sized type, so it's okay to divide by its size.
            let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
            unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); }
        }
    }
}

/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
/// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is `O(n log n)` worst-case.
fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
    where F: FnMut(&T, &T) -> bool
{
    // Slices of up to this length get sorted using insertion sort.
    const MAX_INSERTION: usize = 20;
    // Very short runs are extended using insertion sort to span at least this many elements.
    const MIN_RUN: usize = 10;

    // Sorting has no meaningful behavior on zero-sized types.
    if size_of::<T>() == 0 {
        return;
    }

    let len = v.len();

    // Short arrays get sorted in-place via insertion sort to avoid allocations.
    if len <= MAX_INSERTION {
        if len >= 2 {
            for i in (0..len-1).rev() {
                insert_head(&mut v[i..], &mut is_less);
            }
        }
        return;
    }

    // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
    // shallow copies of the contents of `v` without risking the dtors running on copies if
    // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
    // which will always have length at most `len / 2`.
    let mut buf = Vec::with_capacity(len / 2);

    // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
    // strange decision, but consider the fact that merges more often go in the opposite direction
    // (forwards). According to benchmarks, merging forwards is slightly faster than merging
    // backwards. To conclude, identifying runs by traversing backwards improves performance.
    let mut runs = vec![];
    let mut end = len;
    while end > 0 {
        // Find the next natural run, and reverse it if it's strictly descending.
        let mut start = end - 1;
        if start > 0 {
            start -= 1;
            unsafe {
                if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
                    while start > 0 && is_less(v.get_unchecked(start),
                                               v.get_unchecked(start - 1)) {
                        start -= 1;
                    }
                    v[start..end].reverse();
                } else {
                    while start > 0 && !is_less(v.get_unchecked(start),
                                                v.get_unchecked(start - 1)) {
                        start -= 1;
                    }
                }
            }
        }

        // Insert some more elements into the run if it's too short. Insertion sort is faster than
        // merge sort on short sequences, so this significantly improves performance.
        while start > 0 && end - start < MIN_RUN {
            start -= 1;
            insert_head(&mut v[start..end], &mut is_less);
        }

        // Push this run onto the stack.
        runs.push(Run {
            start,
            len: end - start,
        });
        end = start;

        // Merge some pairs of adjacent runs to satisfy the invariants.
        while let Some(r) = collapse(&runs) {
            let left = runs[r + 1];
            let right = runs[r];
            unsafe {
                merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(),
                      &mut is_less);
            }
            runs[r] = Run {
                start: left.start,
                len: left.len + right.len,
            };
            runs.remove(r + 1);
        }
    }

    // Finally, exactly one run must remain in the stack.
    debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);

    // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
    // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
    // algorithm should continue building a new run instead, `None` is returned.
    //
    // TimSort is infamous for its buggy implementations, as described here:
    // http://envisage-project.eu/timsort-specification-and-verification/
    //
    // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
    // Enforcing them on just top three is not sufficient to ensure that the invariants will still
    // hold for *all* runs in the stack.
    //
    // This function correctly checks invariants for the top four runs. Additionally, if the top
    // run starts at index 0, it will always demand a merge operation until the stack is fully
    // collapsed, in order to complete the sort.
    #[inline]
    fn collapse(runs: &[Run]) -> Option<usize> {
        let n = runs.len();
        if n >= 2 && (runs[n - 1].start == 0 ||
                      runs[n - 2].len <= runs[n - 1].len ||
                      (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) ||
                      (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) {
            if n >= 3 && runs[n - 3].len < runs[n - 1].len {
                Some(n - 3)
            } else {
                Some(n - 2)
            }
        } else {
            None
        }
    }

    #[derive(Clone, Copy)]
    struct Run {
        start: usize,
        len: usize,
    }
}