1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use crate::cell::UnsafeCell;
use crate::sys::mutex::{self, Mutex};
use crate::time::Duration;

pub struct Condvar { inner: UnsafeCell<libc::pthread_cond_t> }

unsafe impl Send for Condvar {}
unsafe impl Sync for Condvar {}

const TIMESPEC_MAX: libc::timespec = libc::timespec {
    tv_sec: <libc::time_t>::max_value(),
    tv_nsec: 1_000_000_000 - 1,
};

fn saturating_cast_to_time_t(value: u64) -> libc::time_t {
    if value > <libc::time_t>::max_value() as u64 {
        <libc::time_t>::max_value()
    } else {
        value as libc::time_t
    }
}

impl Condvar {
    pub const fn new() -> Condvar {
        // Might be moved and address is changing it is better to avoid
        // initialization of potentially opaque OS data before it landed
        Condvar { inner: UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER) }
    }

    #[cfg(any(target_os = "macos",
              target_os = "ios",
              target_os = "l4re",
              target_os = "android",
              target_os = "hermit"))]
    pub unsafe fn init(&mut self) {}

    #[cfg(not(any(target_os = "macos",
                  target_os = "ios",
                  target_os = "l4re",
                  target_os = "android",
                  target_os = "hermit")))]
    pub unsafe fn init(&mut self) {
        use crate::mem;
        let mut attr: libc::pthread_condattr_t = mem::uninitialized();
        let r = libc::pthread_condattr_init(&mut attr);
        assert_eq!(r, 0);
        let r = libc::pthread_condattr_setclock(&mut attr, libc::CLOCK_MONOTONIC);
        assert_eq!(r, 0);
        let r = libc::pthread_cond_init(self.inner.get(), &attr);
        assert_eq!(r, 0);
        let r = libc::pthread_condattr_destroy(&mut attr);
        assert_eq!(r, 0);
    }

    #[inline]
    pub unsafe fn notify_one(&self) {
        let r = libc::pthread_cond_signal(self.inner.get());
        debug_assert_eq!(r, 0);
    }

    #[inline]
    pub unsafe fn notify_all(&self) {
        let r = libc::pthread_cond_broadcast(self.inner.get());
        debug_assert_eq!(r, 0);
    }

    #[inline]
    pub unsafe fn wait(&self, mutex: &Mutex) {
        let r = libc::pthread_cond_wait(self.inner.get(), mutex::raw(mutex));
        debug_assert_eq!(r, 0);
    }

    // This implementation is used on systems that support pthread_condattr_setclock
    // where we configure condition variable to use monotonic clock (instead of
    // default system clock). This approach avoids all problems that result
    // from changes made to the system time.
    #[cfg(not(any(target_os = "macos",
                  target_os = "ios",
                  target_os = "android",
                  target_os = "hermit")))]
    pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
        use crate::mem;

        let mut now: libc::timespec = mem::zeroed();
        let r = libc::clock_gettime(libc::CLOCK_MONOTONIC, &mut now);
        assert_eq!(r, 0);

        // Nanosecond calculations can't overflow because both values are below 1e9.
        let nsec = dur.subsec_nanos() + now.tv_nsec as u32;

        let sec = saturating_cast_to_time_t(dur.as_secs())
            .checked_add((nsec / 1_000_000_000) as libc::time_t)
            .and_then(|s| s.checked_add(now.tv_sec));
        let nsec = nsec % 1_000_000_000;

        let timeout = sec.map(|s| {
            libc::timespec { tv_sec: s, tv_nsec: nsec as _}
        }).unwrap_or(TIMESPEC_MAX);

        let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex),
                                            &timeout);
        assert!(r == libc::ETIMEDOUT || r == 0);
        r == 0
    }


    // This implementation is modeled after libcxx's condition_variable
    // https://github.com/llvm-mirror/libcxx/blob/release_35/src/condition_variable.cpp#L46
    // https://github.com/llvm-mirror/libcxx/blob/release_35/include/__mutex_base#L367
    #[cfg(any(target_os = "macos", target_os = "ios", target_os = "android", target_os = "hermit"))]
    pub unsafe fn wait_timeout(&self, mutex: &Mutex, mut dur: Duration) -> bool {
        use crate::ptr;
        use crate::time::Instant;

        // 1000 years
        let max_dur = Duration::from_secs(1000 * 365 * 86400);

        if dur > max_dur {
            // OSX implementation of `pthread_cond_timedwait` is buggy
            // with super long durations. When duration is greater than
            // 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
            // in macOS Sierra return error 316.
            //
            // This program demonstrates the issue:
            // https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
            //
            // To work around this issue, and possible bugs of other OSes, timeout
            // is clamped to 1000 years, which is allowable per the API of `wait_timeout`
            // because of spurious wakeups.

            dur = max_dur;
        }

        // First, figure out what time it currently is, in both system and
        // stable time.  pthread_cond_timedwait uses system time, but we want to
        // report timeout based on stable time.
        let mut sys_now = libc::timeval { tv_sec: 0, tv_usec: 0 };
        let stable_now = Instant::now();
        let r = libc::gettimeofday(&mut sys_now, ptr::null_mut());
        debug_assert_eq!(r, 0);

        let nsec = dur.subsec_nanos() as libc::c_long +
                   (sys_now.tv_usec * 1000) as libc::c_long;
        let extra = (nsec / 1_000_000_000) as libc::time_t;
        let nsec = nsec % 1_000_000_000;
        let seconds = saturating_cast_to_time_t(dur.as_secs());

        let timeout = sys_now.tv_sec.checked_add(extra).and_then(|s| {
            s.checked_add(seconds)
        }).map(|s| {
            libc::timespec { tv_sec: s, tv_nsec: nsec }
        }).unwrap_or(TIMESPEC_MAX);

        // And wait!
        let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex),
                                            &timeout);
        debug_assert!(r == libc::ETIMEDOUT || r == 0);

        // ETIMEDOUT is not a totally reliable method of determining timeout due
        // to clock shifts, so do the check ourselves
        stable_now.elapsed() < dur
    }

    #[inline]
    #[cfg(not(target_os = "dragonfly"))]
    pub unsafe fn destroy(&self) {
        let r = libc::pthread_cond_destroy(self.inner.get());
        debug_assert_eq!(r, 0);
    }

    #[inline]
    #[cfg(target_os = "dragonfly")]
    pub unsafe fn destroy(&self) {
        let r = libc::pthread_cond_destroy(self.inner.get());
        // On DragonFly pthread_cond_destroy() returns EINVAL if called on
        // a condvar that was just initialized with
        // libc::PTHREAD_COND_INITIALIZER. Once it is used or
        // pthread_cond_init() is called, this behaviour no longer occurs.
        debug_assert!(r == 0 || r == libc::EINVAL);
    }
}