1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//! Rust adaptation of the Grisu3 algorithm described in "Printing Floating-Point Numbers Quickly //! and Accurately with Integers"[^1]. It uses about 1KB of precomputed table, and in turn, it's //! very quick for most inputs. //! //! [^1]: Florian Loitsch. 2010. Printing floating-point numbers quickly and //! accurately with integers. SIGPLAN Not. 45, 6 (June 2010), 233-243. use crate::num::diy_float::Fp; use crate::num::flt2dec::{Decoded, MAX_SIG_DIGITS, round_up}; // see the comments in `format_shortest_opt` for the rationale. #[doc(hidden)] pub const ALPHA: i16 = -60; #[doc(hidden)] pub const GAMMA: i16 = -32; /* # the following Python code generates this table: for i in xrange(-308, 333, 8): if i >= 0: f = 10**i; e = 0 else: f = 2**(80-4*i) // 10**-i; e = 4 * i - 80 l = f.bit_length() f = ((f << 64 >> (l-1)) + 1) >> 1; e += l - 64 print ' (%#018x, %5d, %4d),' % (f, e, i) */ #[doc(hidden)] pub static CACHED_POW10: [(u64, i16, i16); 81] = [ // (f, e, k) (0xe61acf033d1a45df, -1087, -308), (0xab70fe17c79ac6ca, -1060, -300), (0xff77b1fcbebcdc4f, -1034, -292), (0xbe5691ef416bd60c, -1007, -284), (0x8dd01fad907ffc3c, -980, -276), (0xd3515c2831559a83, -954, -268), (0x9d71ac8fada6c9b5, -927, -260), (0xea9c227723ee8bcb, -901, -252), (0xaecc49914078536d, -874, -244), (0x823c12795db6ce57, -847, -236), (0xc21094364dfb5637, -821, -228), (0x9096ea6f3848984f, -794, -220), (0xd77485cb25823ac7, -768, -212), (0xa086cfcd97bf97f4, -741, -204), (0xef340a98172aace5, -715, -196), (0xb23867fb2a35b28e, -688, -188), (0x84c8d4dfd2c63f3b, -661, -180), (0xc5dd44271ad3cdba, -635, -172), (0x936b9fcebb25c996, -608, -164), (0xdbac6c247d62a584, -582, -156), (0xa3ab66580d5fdaf6, -555, -148), (0xf3e2f893dec3f126, -529, -140), (0xb5b5ada8aaff80b8, -502, -132), (0x87625f056c7c4a8b, -475, -124), (0xc9bcff6034c13053, -449, -116), (0x964e858c91ba2655, -422, -108), (0xdff9772470297ebd, -396, -100), (0xa6dfbd9fb8e5b88f, -369, -92), (0xf8a95fcf88747d94, -343, -84), (0xb94470938fa89bcf, -316, -76), (0x8a08f0f8bf0f156b, -289, -68), (0xcdb02555653131b6, -263, -60), (0x993fe2c6d07b7fac, -236, -52), (0xe45c10c42a2b3b06, -210, -44), (0xaa242499697392d3, -183, -36), (0xfd87b5f28300ca0e, -157, -28), (0xbce5086492111aeb, -130, -20), (0x8cbccc096f5088cc, -103, -12), (0xd1b71758e219652c, -77, -4), (0x9c40000000000000, -50, 4), (0xe8d4a51000000000, -24, 12), (0xad78ebc5ac620000, 3, 20), (0x813f3978f8940984, 30, 28), (0xc097ce7bc90715b3, 56, 36), (0x8f7e32ce7bea5c70, 83, 44), (0xd5d238a4abe98068, 109, 52), (0x9f4f2726179a2245, 136, 60), (0xed63a231d4c4fb27, 162, 68), (0xb0de65388cc8ada8, 189, 76), (0x83c7088e1aab65db, 216, 84), (0xc45d1df942711d9a, 242, 92), (0x924d692ca61be758, 269, 100), (0xda01ee641a708dea, 295, 108), (0xa26da3999aef774a, 322, 116), (0xf209787bb47d6b85, 348, 124), (0xb454e4a179dd1877, 375, 132), (0x865b86925b9bc5c2, 402, 140), (0xc83553c5c8965d3d, 428, 148), (0x952ab45cfa97a0b3, 455, 156), (0xde469fbd99a05fe3, 481, 164), (0xa59bc234db398c25, 508, 172), (0xf6c69a72a3989f5c, 534, 180), (0xb7dcbf5354e9bece, 561, 188), (0x88fcf317f22241e2, 588, 196), (0xcc20ce9bd35c78a5, 614, 204), (0x98165af37b2153df, 641, 212), (0xe2a0b5dc971f303a, 667, 220), (0xa8d9d1535ce3b396, 694, 228), (0xfb9b7cd9a4a7443c, 720, 236), (0xbb764c4ca7a44410, 747, 244), (0x8bab8eefb6409c1a, 774, 252), (0xd01fef10a657842c, 800, 260), (0x9b10a4e5e9913129, 827, 268), (0xe7109bfba19c0c9d, 853, 276), (0xac2820d9623bf429, 880, 284), (0x80444b5e7aa7cf85, 907, 292), (0xbf21e44003acdd2d, 933, 300), (0x8e679c2f5e44ff8f, 960, 308), (0xd433179d9c8cb841, 986, 316), (0x9e19db92b4e31ba9, 1013, 324), (0xeb96bf6ebadf77d9, 1039, 332), ]; #[doc(hidden)] pub const CACHED_POW10_FIRST_E: i16 = -1087; #[doc(hidden)] pub const CACHED_POW10_LAST_E: i16 = 1039; #[doc(hidden)] pub fn cached_power(alpha: i16, gamma: i16) -> (i16, Fp) { let offset = CACHED_POW10_FIRST_E as i32; let range = (CACHED_POW10.len() as i32) - 1; let domain = (CACHED_POW10_LAST_E - CACHED_POW10_FIRST_E) as i32; let idx = ((gamma as i32) - offset) * range / domain; let (f, e, k) = CACHED_POW10[idx as usize]; debug_assert!(alpha <= e && e <= gamma); (k, Fp { f, e }) } /// Given `x > 0`, returns `(k, 10^k)` such that `10^k <= x < 10^(k+1)`. #[doc(hidden)] pub fn max_pow10_no_more_than(x: u32) -> (u8, u32) { debug_assert!(x > 0); const X9: u32 = 10_0000_0000; const X8: u32 = 1_0000_0000; const X7: u32 = 1000_0000; const X6: u32 = 100_0000; const X5: u32 = 10_0000; const X4: u32 = 1_0000; const X3: u32 = 1000; const X2: u32 = 100; const X1: u32 = 10; if x < X4 { if x < X2 { if x < X1 {(0, 1)} else {(1, X1)} } else { if x < X3 {(2, X2)} else {(3, X3)} } } else { if x < X6 { if x < X5 {(4, X4)} else {(5, X5)} } else if x < X8 { if x < X7 {(6, X6)} else {(7, X7)} } else { if x < X9 {(8, X8)} else {(9, X9)} } } } /// The shortest mode implementation for Grisu. /// /// It returns `None` when it would return an inexact representation otherwise. pub fn format_shortest_opt(d: &Decoded, buf: &mut [u8]) -> Option<(/*#digits*/ usize, /*exp*/ i16)> { assert!(d.mant > 0); assert!(d.minus > 0); assert!(d.plus > 0); assert!(d.mant.checked_add(d.plus).is_some()); assert!(d.mant.checked_sub(d.minus).is_some()); assert!(buf.len() >= MAX_SIG_DIGITS); assert!(d.mant + d.plus < (1 << 61)); // we need at least three bits of additional precision // start with the normalized values with the shared exponent let plus = Fp { f: d.mant + d.plus, e: d.exp }.normalize(); let minus = Fp { f: d.mant - d.minus, e: d.exp }.normalize_to(plus.e); let v = Fp { f: d.mant, e: d.exp }.normalize_to(plus.e); // find any `cached = 10^minusk` such that `ALPHA <= minusk + plus.e + 64 <= GAMMA`. // since `plus` is normalized, this means `2^(62 + ALPHA) <= plus * cached < 2^(64 + GAMMA)`; // given our choices of `ALPHA` and `GAMMA`, this puts `plus * cached` into `[4, 2^32)`. // // it is obviously desirable to maximize `GAMMA - ALPHA`, // so that we don't need many cached powers of 10, but there are some considerations: // // 1. we want to keep `floor(plus * cached)` within `u32` since it needs a costly division. // (this is not really avoidable, remainder is required for accuracy estimation.) // 2. the remainder of `floor(plus * cached)` repeatedly gets multiplied by 10, // and it should not overflow. // // the first gives `64 + GAMMA <= 32`, while the second gives `10 * 2^-ALPHA <= 2^64`; // -60 and -32 is the maximal range with this constraint, and V8 also uses them. let (minusk, cached) = cached_power(ALPHA - plus.e - 64, GAMMA - plus.e - 64); // scale fps. this gives the maximal error of 1 ulp (proved from Theorem 5.1). let plus = plus.mul(&cached); let minus = minus.mul(&cached); let v = v.mul(&cached); debug_assert_eq!(plus.e, minus.e); debug_assert_eq!(plus.e, v.e); // +- actual range of minus // | <---|---------------------- unsafe region --------------------------> | // | | | // | |<--->| | <--------------- safe region ---------------> | | // | | | | | | // |1 ulp|1 ulp| |1 ulp|1 ulp| |1 ulp|1 ulp| // |<--->|<--->| |<--->|<--->| |<--->|<--->| // |-----|-----|-------...-------|-----|-----|-------...-------|-----|-----| // | minus | | v | | plus | // minus1 minus0 v - 1 ulp v + 1 ulp plus0 plus1 // // above `minus`, `v` and `plus` are *quantized* approximations (error < 1 ulp). // as we don't know the error is positive or negative, we use two approximations spaced equally // and have the maximal error of 2 ulps. // // the "unsafe region" is a liberal interval which we initially generate. // the "safe region" is a conservative interval which we only accept. // we start with the correct repr within the unsafe region, and try to find the closest repr // to `v` which is also within the safe region. if we can't, we give up. let plus1 = plus.f + 1; // let plus0 = plus.f - 1; // only for explanation // let minus0 = minus.f + 1; // only for explanation let minus1 = minus.f - 1; let e = -plus.e as usize; // shared exponent // divide `plus1` into integral and fractional parts. // integral parts are guaranteed to fit in u32, since cached power guarantees `plus < 2^32` // and normalized `plus.f` is always less than `2^64 - 2^4` due to the precision requirement. let plus1int = (plus1 >> e) as u32; let plus1frac = plus1 & ((1 << e) - 1); // calculate the largest `10^max_kappa` no more than `plus1` (thus `plus1 < 10^(max_kappa+1)`). // this is an upper bound of `kappa` below. let (max_kappa, max_ten_kappa) = max_pow10_no_more_than(plus1int); let mut i = 0; let exp = max_kappa as i16 - minusk + 1; // Theorem 6.2: if `k` is the greatest integer s.t. `0 <= y mod 10^k <= y - x`, // then `V = floor(y / 10^k) * 10^k` is in `[x, y]` and one of the shortest // representations (with the minimal number of significant digits) in that range. // // find the digit length `kappa` between `(minus1, plus1)` as per Theorem 6.2. // Theorem 6.2 can be adopted to exclude `x` by requiring `y mod 10^k < y - x` instead. // (e.g., `x` = 32000, `y` = 32777; `kappa` = 2 since `y mod 10^3 = 777 < y - x = 777`.) // the algorithm relies on the later verification phase to exclude `y`. let delta1 = plus1 - minus1; // let delta1int = (delta1 >> e) as usize; // only for explanation let delta1frac = delta1 & ((1 << e) - 1); // render integral parts, while checking for the accuracy at each step. let mut kappa = max_kappa as i16; let mut ten_kappa = max_ten_kappa; // 10^kappa let mut remainder = plus1int; // digits yet to be rendered loop { // we always have at least one digit to render, as `plus1 >= 10^kappa` // invariants: // - `delta1int <= remainder < 10^(kappa+1)` // - `plus1int = d[0..n-1] * 10^(kappa+1) + remainder` // (it follows that `remainder = plus1int % 10^(kappa+1)`) // divide `remainder` by `10^kappa`. both are scaled by `2^-e`. let q = remainder / ten_kappa; let r = remainder % ten_kappa; debug_assert!(q < 10); buf[i] = b'0' + q as u8; i += 1; let plus1rem = ((r as u64) << e) + plus1frac; // == (plus1 % 10^kappa) * 2^e if plus1rem < delta1 { // `plus1 % 10^kappa < delta1 = plus1 - minus1`; we've found the correct `kappa`. let ten_kappa = (ten_kappa as u64) << e; // scale 10^kappa back to the shared exponent return round_and_weed(&mut buf[..i], exp, plus1rem, delta1, plus1 - v.f, ten_kappa, 1); } // break the loop when we have rendered all integral digits. // the exact number of digits is `max_kappa + 1` as `plus1 < 10^(max_kappa+1)`. if i > max_kappa as usize { debug_assert_eq!(ten_kappa, 1); debug_assert_eq!(kappa, 0); break; } // restore invariants kappa -= 1; ten_kappa /= 10; remainder = r; } // render fractional parts, while checking for the accuracy at each step. // this time we rely on repeated multiplications, as division will lose the precision. let mut remainder = plus1frac; let mut threshold = delta1frac; let mut ulp = 1; loop { // the next digit should be significant as we've tested that before breaking out // invariants, where `m = max_kappa + 1` (# of digits in the integral part): // - `remainder < 2^e` // - `plus1frac * 10^(n-m) = d[m..n-1] * 2^e + remainder` remainder *= 10; // won't overflow, `2^e * 10 < 2^64` threshold *= 10; ulp *= 10; // divide `remainder` by `10^kappa`. // both are scaled by `2^e / 10^kappa`, so the latter is implicit here. let q = remainder >> e; let r = remainder & ((1 << e) - 1); debug_assert!(q < 10); buf[i] = b'0' + q as u8; i += 1; if r < threshold { let ten_kappa = 1 << e; // implicit divisor return round_and_weed(&mut buf[..i], exp, r, threshold, (plus1 - v.f) * ulp, ten_kappa, ulp); } // restore invariants kappa -= 1; remainder = r; } // we've generated all significant digits of `plus1`, but not sure if it's the optimal one. // for example, if `minus1` is 3.14153... and `plus1` is 3.14158..., there are 5 different // shortest representation from 3.14154 to 3.14158 but we only have the greatest one. // we have to successively decrease the last digit and check if this is the optimal repr. // there are at most 9 candidates (..1 to ..9), so this is fairly quick. ("rounding" phase) // // the function checks if this "optimal" repr is actually within the ulp ranges, // and also, it is possible that the "second-to-optimal" repr can actually be optimal // due to the rounding error. in either cases this returns `None`. ("weeding" phase) // // all arguments here are scaled by the common (but implicit) value `k`, so that: // - `remainder = (plus1 % 10^kappa) * k` // - `threshold = (plus1 - minus1) * k` (and also, `remainder < threshold`) // - `plus1v = (plus1 - v) * k` (and also, `threshold > plus1v` from prior invariants) // - `ten_kappa = 10^kappa * k` // - `ulp = 2^-e * k` fn round_and_weed(buf: &mut [u8], exp: i16, remainder: u64, threshold: u64, plus1v: u64, ten_kappa: u64, ulp: u64) -> Option<(usize, i16)> { assert!(!buf.is_empty()); // produce two approximations to `v` (actually `plus1 - v`) within 1.5 ulps. // the resulting representation should be the closest representation to both. // // here `plus1 - v` is used since calculations are done with respect to `plus1` // in order to avoid overflow/underflow (hence the seemingly swapped names). let plus1v_down = plus1v + ulp; // plus1 - (v - 1 ulp) let plus1v_up = plus1v - ulp; // plus1 - (v + 1 ulp) // decrease the last digit and stop at the closest representation to `v + 1 ulp`. let mut plus1w = remainder; // plus1w(n) = plus1 - w(n) { let last = buf.last_mut().unwrap(); // we work with the approximated digits `w(n)`, which is initially equal to `plus1 - // plus1 % 10^kappa`. after running the loop body `n` times, `w(n) = plus1 - // plus1 % 10^kappa - n * 10^kappa`. we set `plus1w(n) = plus1 - w(n) = // plus1 % 10^kappa + n * 10^kappa` (thus `remainder = plus1w(0)`) to simplify checks. // note that `plus1w(n)` is always increasing. // // we have three conditions to terminate. any of them will make the loop unable to // proceed, but we then have at least one valid representation known to be closest to // `v + 1 ulp` anyway. we will denote them as TC1 through TC3 for brevity. // // TC1: `w(n) <= v + 1 ulp`, i.e., this is the last repr that can be the closest one. // this is equivalent to `plus1 - w(n) = plus1w(n) >= plus1 - (v + 1 ulp) = plus1v_up`. // combined with TC2 (which checks if `w(n+1)` is valid), this prevents the possible // overflow on the calculation of `plus1w(n)`. // // TC2: `w(n+1) < minus1`, i.e., the next repr definitely does not round to `v`. // this is equivalent to `plus1 - w(n) + 10^kappa = plus1w(n) + 10^kappa > // plus1 - minus1 = threshold`. the left hand side can overflow, but we know // `threshold > plus1v`, so if TC1 is false, `threshold - plus1w(n) > // threshold - (plus1v - 1 ulp) > 1 ulp` and we can safely test if // `threshold - plus1w(n) < 10^kappa` instead. // // TC3: `abs(w(n) - (v + 1 ulp)) <= abs(w(n+1) - (v + 1 ulp))`, i.e., the next repr is // no closer to `v + 1 ulp` than the current repr. given `z(n) = plus1v_up - plus1w(n)`, // this becomes `abs(z(n)) <= abs(z(n+1))`. again assuming that TC1 is false, we have // `z(n) > 0`. we have two cases to consider: // // - when `z(n+1) >= 0`: TC3 becomes `z(n) <= z(n+1)`. as `plus1w(n)` is increasing, // `z(n)` should be decreasing and this is clearly false. // - when `z(n+1) < 0`: // - TC3a: the precondition is `plus1v_up < plus1w(n) + 10^kappa`. assuming TC2 is // false, `threshold >= plus1w(n) + 10^kappa` so it cannot overflow. // - TC3b: TC3 becomes `z(n) <= -z(n+1)`, i.e., `plus1v_up - plus1w(n) >= // plus1w(n+1) - plus1v_up = plus1w(n) + 10^kappa - plus1v_up`. the negated TC1 // gives `plus1v_up > plus1w(n)`, so it cannot overflow or underflow when // combined with TC3a. // // consequently, we should stop when `TC1 || TC2 || (TC3a && TC3b)`. the following is // equal to its inverse, `!TC1 && !TC2 && (!TC3a || !TC3b)`. while plus1w < plus1v_up && threshold - plus1w >= ten_kappa && (plus1w + ten_kappa < plus1v_up || plus1v_up - plus1w >= plus1w + ten_kappa - plus1v_up) { *last -= 1; debug_assert!(*last > b'0'); // the shortest repr cannot end with `0` plus1w += ten_kappa; } } // check if this representation is also the closest representation to `v - 1 ulp`. // // this is simply same to the terminating conditions for `v + 1 ulp`, with all `plus1v_up` // replaced by `plus1v_down` instead. overflow analysis equally holds. if plus1w < plus1v_down && threshold - plus1w >= ten_kappa && (plus1w + ten_kappa < plus1v_down || plus1v_down - plus1w >= plus1w + ten_kappa - plus1v_down) { return None; } // now we have the closest representation to `v` between `plus1` and `minus1`. // this is too liberal, though, so we reject any `w(n)` not between `plus0` and `minus0`, // i.e., `plus1 - plus1w(n) <= minus0` or `plus1 - plus1w(n) >= plus0`. we utilize the facts // that `threshold = plus1 - minus1` and `plus1 - plus0 = minus0 - minus1 = 2 ulp`. if 2 * ulp <= plus1w && plus1w <= threshold - 4 * ulp { Some((buf.len(), exp)) } else { None } } } /// The shortest mode implementation for Grisu with Dragon fallback. /// /// This should be used for most cases. pub fn format_shortest(d: &Decoded, buf: &mut [u8]) -> (/*#digits*/ usize, /*exp*/ i16) { use crate::num::flt2dec::strategy::dragon::format_shortest as fallback; match format_shortest_opt(d, buf) { Some(ret) => ret, None => fallback(d, buf), } } /// The exact and fixed mode implementation for Grisu. /// /// It returns `None` when it would return an inexact representation otherwise. pub fn format_exact_opt(d: &Decoded, buf: &mut [u8], limit: i16) -> Option<(/*#digits*/ usize, /*exp*/ i16)> { assert!(d.mant > 0); assert!(d.mant < (1 << 61)); // we need at least three bits of additional precision assert!(!buf.is_empty()); // normalize and scale `v`. let v = Fp { f: d.mant, e: d.exp }.normalize(); let (minusk, cached) = cached_power(ALPHA - v.e - 64, GAMMA - v.e - 64); let v = v.mul(&cached); // divide `v` into integral and fractional parts. let e = -v.e as usize; let vint = (v.f >> e) as u32; let vfrac = v.f & ((1 << e) - 1); // both old `v` and new `v` (scaled by `10^-k`) has an error of < 1 ulp (Theorem 5.1). // as we don't know the error is positive or negative, we use two approximations // spaced equally and have the maximal error of 2 ulps (same to the shortest case). // // the goal is to find the exactly rounded series of digits that are common to // both `v - 1 ulp` and `v + 1 ulp`, so that we are maximally confident. // if this is not possible, we don't know which one is the correct output for `v`, // so we give up and fall back. // // `err` is defined as `1 ulp * 2^e` here (same to the ulp in `vfrac`), // and we will scale it whenever `v` gets scaled. let mut err = 1; // calculate the largest `10^max_kappa` no more than `v` (thus `v < 10^(max_kappa+1)`). // this is an upper bound of `kappa` below. let (max_kappa, max_ten_kappa) = max_pow10_no_more_than(vint); let mut i = 0; let exp = max_kappa as i16 - minusk + 1; // if we are working with the last-digit limitation, we need to shorten the buffer // before the actual rendering in order to avoid double rounding. // note that we have to enlarge the buffer again when rounding up happens! let len = if exp <= limit { // oops, we cannot even produce *one* digit. // this is possible when, say, we've got something like 9.5 and it's being rounded to 10. // // in principle we can immediately call `possibly_round` with an empty buffer, // but scaling `max_ten_kappa << e` by 10 can result in overflow. // thus we are being sloppy here and widen the error range by a factor of 10. // this will increase the false negative rate, but only very, *very* slightly; // it can only matter noticeably when the mantissa is bigger than 60 bits. return possibly_round(buf, 0, exp, limit, v.f / 10, (max_ten_kappa as u64) << e, err << e); } else if ((exp as i32 - limit as i32) as usize) < buf.len() { (exp - limit) as usize } else { buf.len() }; debug_assert!(len > 0); // render integral parts. // the error is entirely fractional, so we don't need to check it in this part. let mut kappa = max_kappa as i16; let mut ten_kappa = max_ten_kappa; // 10^kappa let mut remainder = vint; // digits yet to be rendered loop { // we always have at least one digit to render // invariants: // - `remainder < 10^(kappa+1)` // - `vint = d[0..n-1] * 10^(kappa+1) + remainder` // (it follows that `remainder = vint % 10^(kappa+1)`) // divide `remainder` by `10^kappa`. both are scaled by `2^-e`. let q = remainder / ten_kappa; let r = remainder % ten_kappa; debug_assert!(q < 10); buf[i] = b'0' + q as u8; i += 1; // is the buffer full? run the rounding pass with the remainder. if i == len { let vrem = ((r as u64) << e) + vfrac; // == (v % 10^kappa) * 2^e return possibly_round(buf, len, exp, limit, vrem, (ten_kappa as u64) << e, err << e); } // break the loop when we have rendered all integral digits. // the exact number of digits is `max_kappa + 1` as `plus1 < 10^(max_kappa+1)`. if i > max_kappa as usize { debug_assert_eq!(ten_kappa, 1); debug_assert_eq!(kappa, 0); break; } // restore invariants kappa -= 1; ten_kappa /= 10; remainder = r; } // render fractional parts. // // in principle we can continue to the last available digit and check for the accuracy. // unfortunately we are working with the finite-sized integers, so we need some criterion // to detect the overflow. V8 uses `remainder > err`, which becomes false when // the first `i` significant digits of `v - 1 ulp` and `v` differ. however this rejects // too many otherwise valid input. // // since the later phase has a correct overflow detection, we instead use tighter criterion: // we continue til `err` exceeds `10^kappa / 2`, so that the range between `v - 1 ulp` and // `v + 1 ulp` definitely contains two or more rounded representations. this is same to // the first two comparisons from `possibly_round`, for the reference. let mut remainder = vfrac; let maxerr = 1 << (e - 1); while err < maxerr { // invariants, where `m = max_kappa + 1` (# of digits in the integral part): // - `remainder < 2^e` // - `vfrac * 10^(n-m) = d[m..n-1] * 2^e + remainder` // - `err = 10^(n-m)` remainder *= 10; // won't overflow, `2^e * 10 < 2^64` err *= 10; // won't overflow, `err * 10 < 2^e * 5 < 2^64` // divide `remainder` by `10^kappa`. // both are scaled by `2^e / 10^kappa`, so the latter is implicit here. let q = remainder >> e; let r = remainder & ((1 << e) - 1); debug_assert!(q < 10); buf[i] = b'0' + q as u8; i += 1; // is the buffer full? run the rounding pass with the remainder. if i == len { return possibly_round(buf, len, exp, limit, r, 1 << e, err); } // restore invariants remainder = r; } // further calculation is useless (`possibly_round` definitely fails), so we give up. return None; // we've generated all requested digits of `v`, which should be also same to corresponding // digits of `v - 1 ulp`. now we check if there is a unique representation shared by // both `v - 1 ulp` and `v + 1 ulp`; this can be either same to generated digits, or // to the rounded-up version of those digits. if the range contains multiple representations // of the same length, we cannot be sure and should return `None` instead. // // all arguments here are scaled by the common (but implicit) value `k`, so that: // - `remainder = (v % 10^kappa) * k` // - `ten_kappa = 10^kappa * k` // - `ulp = 2^-e * k` fn possibly_round(buf: &mut [u8], mut len: usize, mut exp: i16, limit: i16, remainder: u64, ten_kappa: u64, ulp: u64) -> Option<(usize, i16)> { debug_assert!(remainder < ten_kappa); // 10^kappa // : : :<->: : // : : : : : // :|1 ulp|1 ulp| : // :|<--->|<--->| : // ----|-----|-----|---- // | v | // v - 1 ulp v + 1 ulp // // (for the reference, the dotted line indicates the exact value for // possible representations in given number of digits.) // // error is too large that there are at least three possible representations // between `v - 1 ulp` and `v + 1 ulp`. we cannot determine which one is correct. if ulp >= ten_kappa { return None; } // 10^kappa // :<------->: // : : // : |1 ulp|1 ulp| // : |<--->|<--->| // ----|-----|-----|---- // | v | // v - 1 ulp v + 1 ulp // // in fact, 1/2 ulp is enough to introduce two possible representations. // (remember that we need a unique representation for both `v - 1 ulp` and `v + 1 ulp`.) // this won't overflow, as `ulp < ten_kappa` from the first check. if ten_kappa - ulp <= ulp { return None; } // remainder // :<->| : // : | : // :<--------- 10^kappa ---------->: // | : | : // |1 ulp|1 ulp| : // |<--->|<--->| : // ----|-----|-----|------------------------ // | v | // v - 1 ulp v + 1 ulp // // if `v + 1 ulp` is closer to the rounded-down representation (which is already in `buf`), // then we can safely return. note that `v - 1 ulp` *can* be less than the current // representation, but as `1 ulp < 10^kappa / 2`, this condition is enough: // the distance between `v - 1 ulp` and the current representation // cannot exceed `10^kappa / 2`. // // the condition equals to `remainder + ulp < 10^kappa / 2`. // since this can easily overflow, first check if `remainder < 10^kappa / 2`. // we've already verified that `ulp < 10^kappa / 2`, so as long as // `10^kappa` did not overflow after all, the second check is fine. if ten_kappa - remainder > remainder && ten_kappa - 2 * remainder >= 2 * ulp { return Some((len, exp)); } // :<------- remainder ------>| : // : | : // :<--------- 10^kappa --------->: // : | | : | // : |1 ulp|1 ulp| // : |<--->|<--->| // -----------------------|-----|-----|----- // | v | // v - 1 ulp v + 1 ulp // // on the other hands, if `v - 1 ulp` is closer to the rounded-up representation, // we should round up and return. for the same reason we don't need to check `v + 1 ulp`. // // the condition equals to `remainder - ulp >= 10^kappa / 2`. // again we first check if `remainder > ulp` (note that this is not `remainder >= ulp`, // as `10^kappa` is never zero). also note that `remainder - ulp <= 10^kappa`, // so the second check does not overflow. if remainder > ulp && ten_kappa - (remainder - ulp) <= remainder - ulp { if let Some(c) = round_up(buf, len) { // only add an additional digit when we've been requested the fixed precision. // we also need to check that, if the original buffer was empty, // the additional digit can only be added when `exp == limit` (edge case). exp += 1; if exp > limit && len < buf.len() { buf[len] = c; len += 1; } } return Some((len, exp)); } // otherwise we are doomed (i.e., some values between `v - 1 ulp` and `v + 1 ulp` are // rounding down and others are rounding up) and give up. None } } /// The exact and fixed mode implementation for Grisu with Dragon fallback. /// /// This should be used for most cases. pub fn format_exact(d: &Decoded, buf: &mut [u8], limit: i16) -> (/*#digits*/ usize, /*exp*/ i16) { use crate::num::flt2dec::strategy::dragon::format_exact as fallback; match format_exact_opt(d, buf, limit) { Some(ret) => ret, None => fallback(d, buf, limit), } }