1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
//! Primitive traits and types representing basic properties of types. //! //! Rust types can be classified in various useful ways according to //! their intrinsic properties. These classifications are represented //! as traits. #![stable(feature = "rust1", since = "1.0.0")] use crate::cell::UnsafeCell; use crate::cmp; use crate::hash::Hash; use crate::hash::Hasher; /// Types that can be transferred across thread boundaries. /// /// This trait is automatically implemented when the compiler determines it's /// appropriate. /// /// An example of a non-`Send` type is the reference-counting pointer /// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same /// reference-counted value, they might try to update the reference count at the /// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic /// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring /// some overhead) and thus is `Send`. /// /// See [the Nomicon](../../nomicon/send-and-sync.html) for more details. /// /// [`Rc`]: ../../std/rc/struct.Rc.html /// [arc]: ../../std/sync/struct.Arc.html /// [ub]: ../../reference/behavior-considered-undefined.html #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message="`{Self}` cannot be sent between threads safely", label="`{Self}` cannot be sent between threads safely" )] pub unsafe auto trait Send { // empty. } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> !Send for *const T { } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> !Send for *mut T { } /// Types with a constant size known at compile time. /// /// All type parameters have an implicit bound of `Sized`. The special syntax /// `?Sized` can be used to remove this bound if it's not appropriate. /// /// ``` /// # #![allow(dead_code)] /// struct Foo<T>(T); /// struct Bar<T: ?Sized>(T); /// /// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32] /// struct BarUse(Bar<[i32]>); // OK /// ``` /// /// The one exception is the implicit `Self` type of a trait. A trait does not /// have an implicit `Sized` bound as this is incompatible with [trait object]s /// where, by definition, the trait needs to work with all possible implementors, /// and thus could be any size. /// /// Although Rust will let you bind `Sized` to a trait, you won't /// be able to use it to form a trait object later: /// /// ``` /// # #![allow(unused_variables)] /// trait Foo { } /// trait Bar: Sized { } /// /// struct Impl; /// impl Foo for Impl { } /// impl Bar for Impl { } /// /// let x: &dyn Foo = &Impl; // OK /// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot /// // be made into an object /// ``` /// /// [trait object]: ../../book/ch17-02-trait-objects.html #[stable(feature = "rust1", since = "1.0.0")] #[lang = "sized"] #[rustc_on_unimplemented( on(parent_trait="std::path::Path", label="borrow the `Path` instead"), message="the size for values of type `{Self}` cannot be known at compilation time", label="doesn't have a size known at compile-time", note="to learn more, visit <https://doc.rust-lang.org/book/\ ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait>", )] #[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable pub trait Sized { // Empty. } /// Types that can be "unsized" to a dynamically-sized type. /// /// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and /// `Unsize<fmt::Debug>`. /// /// All implementations of `Unsize` are provided automatically by the compiler. /// /// `Unsize` is implemented for: /// /// - `[T; N]` is `Unsize<[T]>` /// - `T` is `Unsize<Trait>` when `T: Trait` /// - `Foo<..., T, ...>` is `Unsize<Foo<..., U, ...>>` if: /// - `T: Unsize<U>` /// - Foo is a struct /// - Only the last field of `Foo` has a type involving `T` /// - `T` is not part of the type of any other fields /// - `Bar<T>: Unsize<Bar<U>>`, if the last field of `Foo` has type `Bar<T>` /// /// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow /// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized /// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce] /// for more details. /// /// [coerceunsized]: ../ops/trait.CoerceUnsized.html /// [rc]: ../../std/rc/struct.Rc.html /// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md /// [nomicon-coerce]: ../../nomicon/coercions.html #[unstable(feature = "unsize", issue = "27732")] #[lang = "unsize"] pub trait Unsize<T: ?Sized> { // Empty. } /// Types whose values can be duplicated simply by copying bits. /// /// By default, variable bindings have 'move semantics.' In other /// words: /// /// ``` /// #[derive(Debug)] /// struct Foo; /// /// let x = Foo; /// /// let y = x; /// /// // `x` has moved into `y`, and so cannot be used /// /// // println!("{:?}", x); // error: use of moved value /// ``` /// /// However, if a type implements `Copy`, it instead has 'copy semantics': /// /// ``` /// // We can derive a `Copy` implementation. `Clone` is also required, as it's /// // a supertrait of `Copy`. /// #[derive(Debug, Copy, Clone)] /// struct Foo; /// /// let x = Foo; /// /// let y = x; /// /// // `y` is a copy of `x` /// /// println!("{:?}", x); // A-OK! /// ``` /// /// It's important to note that in these two examples, the only difference is whether you /// are allowed to access `x` after the assignment. Under the hood, both a copy and a move /// can result in bits being copied in memory, although this is sometimes optimized away. /// /// ## How can I implement `Copy`? /// /// There are two ways to implement `Copy` on your type. The simplest is to use `derive`: /// /// ``` /// #[derive(Copy, Clone)] /// struct MyStruct; /// ``` /// /// You can also implement `Copy` and `Clone` manually: /// /// ``` /// struct MyStruct; /// /// impl Copy for MyStruct { } /// /// impl Clone for MyStruct { /// fn clone(&self) -> MyStruct { /// *self /// } /// } /// ``` /// /// There is a small difference between the two: the `derive` strategy will also place a `Copy` /// bound on type parameters, which isn't always desired. /// /// ## What's the difference between `Copy` and `Clone`? /// /// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of /// `Copy` is not overloadable; it is always a simple bit-wise copy. /// /// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can /// provide any type-specific behavior necessary to duplicate values safely. For example, /// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string /// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the /// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`] /// but not `Copy`. /// /// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement /// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self` /// (see the example above). /// /// ## When can my type be `Copy`? /// /// A type can implement `Copy` if all of its components implement `Copy`. For example, this /// struct can be `Copy`: /// /// ``` /// # #[allow(dead_code)] /// struct Point { /// x: i32, /// y: i32, /// } /// ``` /// /// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`. /// By contrast, consider /// /// ``` /// # #![allow(dead_code)] /// # struct Point; /// struct PointList { /// points: Vec<Point>, /// } /// ``` /// /// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we /// attempt to derive a `Copy` implementation, we'll get an error: /// /// ```text /// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy` /// ``` /// /// ## When *can't* my type be `Copy`? /// /// Some types can't be copied safely. For example, copying `&mut T` would create an aliased /// mutable reference. Copying [`String`] would duplicate responsibility for managing the /// [`String`]'s buffer, leading to a double free. /// /// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's /// managing some resource besides its own [`size_of::<T>`] bytes. /// /// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get /// the error [E0204]. /// /// [E0204]: ../../error-index.html#E0204 /// /// ## When *should* my type be `Copy`? /// /// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though, /// that implementing `Copy` is part of the public API of your type. If the type might become /// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to /// avoid a breaking API change. /// /// ## Additional implementors /// /// In addition to the [implementors listed below][impls], /// the following types also implement `Copy`: /// /// * Function item types (i.e., the distinct types defined for each function) /// * Function pointer types (e.g., `fn() -> i32`) /// * Array types, for all sizes, if the item type also implements `Copy` (e.g., `[i32; 123456]`) /// * Tuple types, if each component also implements `Copy` (e.g., `()`, `(i32, bool)`) /// * Closure types, if they capture no value from the environment /// or if all such captured values implement `Copy` themselves. /// Note that variables captured by shared reference always implement `Copy` /// (even if the referent doesn't), /// while variables captured by mutable reference never implement `Copy`. /// /// [`Vec<T>`]: ../../std/vec/struct.Vec.html /// [`String`]: ../../std/string/struct.String.html /// [`Drop`]: ../../std/ops/trait.Drop.html /// [`size_of::<T>`]: ../../std/mem/fn.size_of.html /// [`Clone`]: ../clone/trait.Clone.html /// [`String`]: ../../std/string/struct.String.html /// [`i32`]: ../../std/primitive.i32.html /// [impls]: #implementors #[stable(feature = "rust1", since = "1.0.0")] #[lang = "copy"] pub trait Copy : Clone { // Empty. } /// Types for which it is safe to share references between threads. /// /// This trait is automatically implemented when the compiler determines /// it's appropriate. /// /// The precise definition is: a type `T` is `Sync` if and only if `&T` is /// [`Send`][send]. In other words, if there is no possibility of /// [undefined behavior][ub] (including data races) when passing /// `&T` references between threads. /// /// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64] /// are all `Sync`, and so are simple aggregate types containing them, /// like tuples, structs and enums. More examples of basic `Sync` /// types include "immutable" types like `&T`, and those with simple /// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and /// most other collection types. (Generic parameters need to be `Sync` /// for their container to be `Sync`.) /// /// A somewhat surprising consequence of the definition is that `&mut T` /// is `Sync` (if `T` is `Sync`) even though it seems like that might /// provide unsynchronized mutation. The trick is that a mutable /// reference behind a shared reference (that is, `& &mut T`) /// becomes read-only, as if it were a `& &T`. Hence there is no risk /// of a data race. /// /// Types that are not `Sync` are those that have "interior /// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell] /// and [`cell::RefCell`][refcell]. These types allow for mutation of /// their contents even through an immutable, shared reference. For /// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires /// only a shared reference [`&Cell<T>`][cell]. The method performs no /// synchronization, thus [`Cell`][cell] cannot be `Sync`. /// /// Another example of a non-`Sync` type is the reference-counting /// pointer [`rc::Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone /// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way. /// /// For cases when one does need thread-safe interior mutability, /// Rust provides [atomic data types], as well as explicit locking via /// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types /// ensure that any mutation cannot cause data races, hence the types /// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe /// analogue of [`Rc`][rc]. /// /// Any types with interior mutability must also use the /// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which /// can be mutated through a shared reference. Failing to doing this is /// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing /// from `&T` to `&mut T` is invalid. /// /// See [the Nomicon](../../nomicon/send-and-sync.html) for more /// details about `Sync`. /// /// [send]: trait.Send.html /// [u8]: ../../std/primitive.u8.html /// [f64]: ../../std/primitive.f64.html /// [box]: ../../std/boxed/struct.Box.html /// [vec]: ../../std/vec/struct.Vec.html /// [cell]: ../cell/struct.Cell.html /// [refcell]: ../cell/struct.RefCell.html /// [rc]: ../../std/rc/struct.Rc.html /// [arc]: ../../std/sync/struct.Arc.html /// [atomic data types]: ../sync/atomic/index.html /// [mutex]: ../../std/sync/struct.Mutex.html /// [rwlock]: ../../std/sync/struct.RwLock.html /// [unsafecell]: ../cell/struct.UnsafeCell.html /// [ub]: ../../reference/behavior-considered-undefined.html /// [transmute]: ../../std/mem/fn.transmute.html #[stable(feature = "rust1", since = "1.0.0")] #[lang = "sync"] #[rustc_on_unimplemented( message="`{Self}` cannot be shared between threads safely", label="`{Self}` cannot be shared between threads safely" )] pub unsafe auto trait Sync { // FIXME(estebank): once support to add notes in `rustc_on_unimplemented` // lands in beta, and it has been extended to check whether a closure is // anywhere in the requirement chain, extend it as such (#48534): // ``` // on( // closure, // note="`{Self}` cannot be shared safely, consider marking the closure `move`" // ), // ``` // Empty } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> !Sync for *const T { } #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> !Sync for *mut T { } macro_rules! impls{ ($t: ident) => ( #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> Hash for $t<T> { #[inline] fn hash<H: Hasher>(&self, _: &mut H) { } } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> cmp::PartialEq for $t<T> { fn eq(&self, _other: &$t<T>) -> bool { true } } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> cmp::Eq for $t<T> { } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> cmp::PartialOrd for $t<T> { fn partial_cmp(&self, _other: &$t<T>) -> Option<cmp::Ordering> { Option::Some(cmp::Ordering::Equal) } } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> cmp::Ord for $t<T> { fn cmp(&self, _other: &$t<T>) -> cmp::Ordering { cmp::Ordering::Equal } } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> Copy for $t<T> { } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> Clone for $t<T> { fn clone(&self) -> $t<T> { $t } } #[stable(feature = "rust1", since = "1.0.0")] impl<T:?Sized> Default for $t<T> { fn default() -> $t<T> { $t } } ) } /// Zero-sized type used to mark things that "act like" they own a `T`. /// /// Adding a `PhantomData<T>` field to your type tells the compiler that your /// type acts as though it stores a value of type `T`, even though it doesn't /// really. This information is used when computing certain safety properties. /// /// For a more in-depth explanation of how to use `PhantomData<T>`, please see /// [the Nomicon](../../nomicon/phantom-data.html). /// /// # A ghastly note 👻👻👻 /// /// Though they both have scary names, `PhantomData` and 'phantom types' are /// related, but not identical. A phantom type parameter is simply a type /// parameter which is never used. In Rust, this often causes the compiler to /// complain, and the solution is to add a "dummy" use by way of `PhantomData`. /// /// # Examples /// /// ## Unused lifetime parameters /// /// Perhaps the most common use case for `PhantomData` is a struct that has an /// unused lifetime parameter, typically as part of some unsafe code. For /// example, here is a struct `Slice` that has two pointers of type `*const T`, /// presumably pointing into an array somewhere: /// /// ```compile_fail,E0392 /// struct Slice<'a, T> { /// start: *const T, /// end: *const T, /// } /// ``` /// /// The intention is that the underlying data is only valid for the /// lifetime `'a`, so `Slice` should not outlive `'a`. However, this /// intent is not expressed in the code, since there are no uses of /// the lifetime `'a` and hence it is not clear what data it applies /// to. We can correct this by telling the compiler to act *as if* the /// `Slice` struct contained a reference `&'a T`: /// /// ``` /// use std::marker::PhantomData; /// /// # #[allow(dead_code)] /// struct Slice<'a, T: 'a> { /// start: *const T, /// end: *const T, /// phantom: PhantomData<&'a T>, /// } /// ``` /// /// This also in turn requires the annotation `T: 'a`, indicating /// that any references in `T` are valid over the lifetime `'a`. /// /// When initializing a `Slice` you simply provide the value /// `PhantomData` for the field `phantom`: /// /// ``` /// # #![allow(dead_code)] /// # use std::marker::PhantomData; /// # struct Slice<'a, T: 'a> { /// # start: *const T, /// # end: *const T, /// # phantom: PhantomData<&'a T>, /// # } /// fn borrow_vec<'a, T>(vec: &'a Vec<T>) -> Slice<'a, T> { /// let ptr = vec.as_ptr(); /// Slice { /// start: ptr, /// end: unsafe { ptr.add(vec.len()) }, /// phantom: PhantomData, /// } /// } /// ``` /// /// ## Unused type parameters /// /// It sometimes happens that you have unused type parameters which /// indicate what type of data a struct is "tied" to, even though that /// data is not actually found in the struct itself. Here is an /// example where this arises with [FFI]. The foreign interface uses /// handles of type `*mut ()` to refer to Rust values of different /// types. We track the Rust type using a phantom type parameter on /// the struct `ExternalResource` which wraps a handle. /// /// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code /// /// ``` /// # #![allow(dead_code)] /// # trait ResType { } /// # struct ParamType; /// # mod foreign_lib { /// # pub fn new(_: usize) -> *mut () { 42 as *mut () } /// # pub fn do_stuff(_: *mut (), _: usize) {} /// # } /// # fn convert_params(_: ParamType) -> usize { 42 } /// use std::marker::PhantomData; /// use std::mem; /// /// struct ExternalResource<R> { /// resource_handle: *mut (), /// resource_type: PhantomData<R>, /// } /// /// impl<R: ResType> ExternalResource<R> { /// fn new() -> ExternalResource<R> { /// let size_of_res = mem::size_of::<R>(); /// ExternalResource { /// resource_handle: foreign_lib::new(size_of_res), /// resource_type: PhantomData, /// } /// } /// /// fn do_stuff(&self, param: ParamType) { /// let foreign_params = convert_params(param); /// foreign_lib::do_stuff(self.resource_handle, foreign_params); /// } /// } /// ``` /// /// ## Ownership and the drop check /// /// Adding a field of type `PhantomData<T>` indicates that your /// type owns data of type `T`. This in turn implies that when your /// type is dropped, it may drop one or more instances of the type /// `T`. This has bearing on the Rust compiler's [drop check] /// analysis. /// /// If your struct does not in fact *own* the data of type `T`, it is /// better to use a reference type, like `PhantomData<&'a T>` /// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so /// as not to indicate ownership. /// /// [drop check]: ../../nomicon/dropck.html #[lang = "phantom_data"] #[structural_match] #[stable(feature = "rust1", since = "1.0.0")] pub struct PhantomData<T:?Sized>; impls! { PhantomData } mod impls { #[stable(feature = "rust1", since = "1.0.0")] unsafe impl<T: Sync + ?Sized> Send for &T {} #[stable(feature = "rust1", since = "1.0.0")] unsafe impl<T: Send + ?Sized> Send for &mut T {} } /// Compiler-internal trait used to determine whether a type contains /// any `UnsafeCell` internally, but not through an indirection. /// This affects, for example, whether a `static` of that type is /// placed in read-only static memory or writable static memory. #[lang = "freeze"] pub(crate) unsafe auto trait Freeze {} impl<T: ?Sized> !Freeze for UnsafeCell<T> {} unsafe impl<T: ?Sized> Freeze for PhantomData<T> {} unsafe impl<T: ?Sized> Freeze for *const T {} unsafe impl<T: ?Sized> Freeze for *mut T {} unsafe impl<T: ?Sized> Freeze for &T {} unsafe impl<T: ?Sized> Freeze for &mut T {} /// Types which can be safely moved after being pinned. /// /// Since Rust itself has no notion of immovable types, and considers moves /// (e.g. through assignment or [`mem::replace`]) to always be safe, /// this trait cannot prevent types from moving by itself. /// /// Instead it is used to prevent moves through the type system, /// by controlling the behavior of pointers `P` wrapped in the [`Pin<P>`] wrapper, /// which "pin" the type in place by not allowing it to be moved out of them. /// See the [`pin module`] documentation for more information on pinning. /// /// Implementing this trait lifts the restrictions of pinning off a type, /// which then allows it to move out with functions such as [`mem::replace`]. /// /// `Unpin` has no consequence at all for non-pinned data. In particular, /// [`mem::replace`] happily moves `!Unpin` data (it works for any `&mut T`, not /// just when `T: Unpin`). However, you cannot use /// [`mem::replace`] on data wrapped inside a [`Pin<P>`] because you cannot get the /// `&mut T` you need for that, and *that* is what makes this system work. /// /// So this, for example, can only be done on types implementing `Unpin`: /// /// ```rust /// use std::mem; /// use std::pin::Pin; /// /// let mut string = "this".to_string(); /// let mut pinned_string = Pin::new(&mut string); /// /// // We need a mutable reference to call `mem::replace`. /// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`, /// // but that is only possible because `String` implements `Unpin`. /// mem::replace(&mut *pinned_string, "other".to_string()); /// ``` /// /// This trait is automatically implemented for almost every type. /// /// [`mem::replace`]: ../../std/mem/fn.replace.html /// [`Pin<P>`]: ../pin/struct.Pin.html /// [`pin module`]: ../../std/pin/index.html #[stable(feature = "pin", since = "1.33.0")] #[lang = "unpin"] pub auto trait Unpin {} /// A marker type which does not implement `Unpin`. /// /// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default. #[stable(feature = "pin", since = "1.33.0")] #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct PhantomPinned; #[stable(feature = "pin", since = "1.33.0")] impl !Unpin for PhantomPinned {} #[stable(feature = "pin", since = "1.33.0")] impl<'a, T: ?Sized + 'a> Unpin for &'a T {} #[stable(feature = "pin", since = "1.33.0")] impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {} /// Implementations of `Copy` for primitive types. /// /// Implementations that cannot be described in Rust /// are implemented in `SelectionContext::copy_clone_conditions()` in librustc. mod copy_impls { use super::Copy; macro_rules! impl_copy { ($($t:ty)*) => { $( #[stable(feature = "rust1", since = "1.0.0")] impl Copy for $t {} )* } } impl_copy! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 bool char } #[unstable(feature = "never_type", issue = "35121")] impl Copy for ! {} #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> Copy for *const T {} #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> Copy for *mut T {} // Shared references can be copied, but mutable references *cannot*! #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized> Copy for &T {} }