1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
#[doc(primitive = "bool")] #[doc(alias = "true")] #[doc(alias = "false")] // /// The boolean type. /// /// The `bool` represents a value, which could only be either `true` or `false`. If you cast /// a `bool` into an integer, `true` will be 1 and `false` will be 0. /// /// # Basic usage /// /// `bool` implements various traits, such as [`BitAnd`], [`BitOr`], [`Not`], etc., /// which allow us to perform boolean operations using `&`, `|` and `!`. /// /// `if` always demands a `bool` value. [`assert!`], being an important macro in testing, /// checks whether an expression returns `true`. /// /// ``` /// let bool_val = true & false | false; /// assert!(!bool_val); /// ``` /// /// [`assert!`]: macro.assert.html /// [`BitAnd`]: ops/trait.BitAnd.html /// [`BitOr`]: ops/trait.BitOr.html /// [`Not`]: ops/trait.Not.html /// /// # Examples /// /// A trivial example of the usage of `bool`, /// /// ``` /// let praise_the_borrow_checker = true; /// /// // using the `if` conditional /// if praise_the_borrow_checker { /// println!("oh, yeah!"); /// } else { /// println!("what?!!"); /// } /// /// // ... or, a match pattern /// match praise_the_borrow_checker { /// true => println!("keep praising!"), /// false => println!("you should praise!"), /// } /// ``` /// /// Also, since `bool` implements the [`Copy`](marker/trait.Copy.html) trait, we don't /// have to worry about the move semantics (just like the integer and float primitives). /// /// Now an example of `bool` cast to integer type: /// /// ``` /// assert_eq!(true as i32, 1); /// assert_eq!(false as i32, 0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] mod prim_bool { } #[doc(primitive = "never")] #[doc(alias = "!")] // /// The `!` type, also called "never". /// /// `!` represents the type of computations which never resolve to any value at all. For example, /// the [`exit`] function `fn exit(code: i32) -> !` exits the process without ever returning, and /// so returns `!`. /// /// `break`, `continue` and `return` expressions also have type `!`. For example we are allowed to /// write: /// /// ``` /// #![feature(never_type)] /// # fn foo() -> u32 { /// let x: ! = { /// return 123 /// }; /// # } /// ``` /// /// Although the `let` is pointless here, it illustrates the meaning of `!`. Since `x` is never /// assigned a value (because `return` returns from the entire function), `x` can be given type /// `!`. We could also replace `return 123` with a `panic!` or a never-ending `loop` and this code /// would still be valid. /// /// A more realistic usage of `!` is in this code: /// /// ``` /// # fn get_a_number() -> Option<u32> { None } /// # loop { /// let num: u32 = match get_a_number() { /// Some(num) => num, /// None => break, /// }; /// # } /// ``` /// /// Both match arms must produce values of type [`u32`], but since `break` never produces a value /// at all we know it can never produce a value which isn't a [`u32`]. This illustrates another /// behaviour of the `!` type - expressions with type `!` will coerce into any other type. /// /// [`u32`]: primitive.str.html /// [`exit`]: process/fn.exit.html /// /// # `!` and generics /// /// ## Infallible errors /// /// The main place you'll see `!` used explicitly is in generic code. Consider the [`FromStr`] /// trait: /// /// ``` /// trait FromStr: Sized { /// type Err; /// fn from_str(s: &str) -> Result<Self, Self::Err>; /// } /// ``` /// /// When implementing this trait for [`String`] we need to pick a type for [`Err`]. And since /// converting a string into a string will never result in an error, the appropriate type is `!`. /// (Currently the type actually used is an enum with no variants, though this is only because `!` /// was added to Rust at a later date and it may change in the future). With an [`Err`] type of /// `!`, if we have to call [`String::from_str`] for some reason the result will be a /// [`Result<String, !>`] which we can unpack like this: /// /// ```ignore (string-from-str-error-type-is-not-never-yet) /// #[feature(exhaustive_patterns)] /// // NOTE: this does not work today! /// let Ok(s) = String::from_str("hello"); /// ``` /// /// Since the [`Err`] variant contains a `!`, it can never occur. If the `exhaustive_patterns` /// feature is present this means we can exhaustively match on [`Result<T, !>`] by just taking the /// [`Ok`] variant. This illustrates another behaviour of `!` - it can be used to "delete" certain /// enum variants from generic types like `Result`. /// /// ## Infinite loops /// /// While [`Result<T, !>`] is very useful for removing errors, `!` can also be used to remove /// successes as well. If we think of [`Result<T, !>`] as "if this function returns, it has not /// errored," we get a very intuitive idea of [`Result<!, E>`] as well: if the function returns, it /// *has* errored. /// /// For example, consider the case of a simple web server, which can be simplified to: /// /// ```ignore (hypothetical-example) /// loop { /// let (client, request) = get_request().expect("disconnected"); /// let response = request.process(); /// response.send(client); /// } /// ``` /// /// Currently, this isn't ideal, because we simply panic whenever we fail to get a new connection. /// Instead, we'd like to keep track of this error, like this: /// /// ```ignore (hypothetical-example) /// loop { /// match get_request() { /// Err(err) => break err, /// Ok((client, request)) => { /// let response = request.process(); /// response.send(client); /// }, /// } /// } /// ``` /// /// Now, when the server disconnects, we exit the loop with an error instead of panicking. While it /// might be intuitive to simply return the error, we might want to wrap it in a [`Result<!, E>`] /// instead: /// /// ```ignore (hypothetical-example) /// fn server_loop() -> Result<!, ConnectionError> { /// loop { /// let (client, request) = get_request()?; /// let response = request.process(); /// response.send(client); /// } /// } /// ``` /// /// Now, we can use `?` instead of `match`, and the return type makes a lot more sense: if the loop /// ever stops, it means that an error occurred. We don't even have to wrap the loop in an `Ok` /// because `!` coerces to `Result<!, ConnectionError>` automatically. /// /// [`String::from_str`]: str/trait.FromStr.html#tymethod.from_str /// [`Result<String, !>`]: result/enum.Result.html /// [`Result<T, !>`]: result/enum.Result.html /// [`Result<!, E>`]: result/enum.Result.html /// [`Ok`]: result/enum.Result.html#variant.Ok /// [`String`]: string/struct.String.html /// [`Err`]: result/enum.Result.html#variant.Err /// [`FromStr`]: str/trait.FromStr.html /// /// # `!` and traits /// /// When writing your own traits, `!` should have an `impl` whenever there is an obvious `impl` /// which doesn't `panic!`. As it turns out, most traits can have an `impl` for `!`. Take [`Debug`] /// for example: /// /// ``` /// #![feature(never_type)] /// # use std::fmt; /// # trait Debug { /// # fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result; /// # } /// impl Debug for ! { /// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result { /// *self /// } /// } /// ``` /// /// Once again we're using `!`'s ability to coerce into any other type, in this case /// [`fmt::Result`]. Since this method takes a `&!` as an argument we know that it can never be /// called (because there is no value of type `!` for it to be called with). Writing `*self` /// essentially tells the compiler "We know that this code can never be run, so just treat the /// entire function body as having type [`fmt::Result`]". This pattern can be used a lot when /// implementing traits for `!`. Generally, any trait which only has methods which take a `self` /// parameter should have such an impl. /// /// On the other hand, one trait which would not be appropriate to implement is [`Default`]: /// /// ``` /// trait Default { /// fn default() -> Self; /// } /// ``` /// /// Since `!` has no values, it has no default value either. It's true that we could write an /// `impl` for this which simply panics, but the same is true for any type (we could `impl /// Default` for (eg.) [`File`] by just making [`default()`] panic.) /// /// [`fmt::Result`]: fmt/type.Result.html /// [`File`]: fs/struct.File.html /// [`Debug`]: fmt/trait.Debug.html /// [`Default`]: default/trait.Default.html /// [`default()`]: default/trait.Default.html#tymethod.default /// #[unstable(feature = "never_type", issue = "35121")] mod prim_never { } #[doc(primitive = "char")] // /// A character type. /// /// The `char` type represents a single character. More specifically, since /// 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode /// scalar value]', which is similar to, but not the same as, a '[Unicode code /// point]'. /// /// [Unicode scalar value]: http://www.unicode.org/glossary/#unicode_scalar_value /// [Unicode code point]: http://www.unicode.org/glossary/#code_point /// /// This documentation describes a number of methods and trait implementations on the /// `char` type. For technical reasons, there is additional, separate /// documentation in [the `std::char` module](char/index.html) as well. /// /// # Representation /// /// `char` is always four bytes in size. This is a different representation than /// a given character would have as part of a [`String`]. For example: /// /// ``` /// let v = vec!['h', 'e', 'l', 'l', 'o']; /// /// // five elements times four bytes for each element /// assert_eq!(20, v.len() * std::mem::size_of::<char>()); /// /// let s = String::from("hello"); /// /// // five elements times one byte per element /// assert_eq!(5, s.len() * std::mem::size_of::<u8>()); /// ``` /// /// [`String`]: string/struct.String.html /// /// As always, remember that a human intuition for 'character' may not map to /// Unicode's definitions. For example, despite looking similar, the 'é' /// character is one Unicode code point while 'é' is two Unicode code points: /// /// ``` /// let mut chars = "é".chars(); /// // U+00e9: 'latin small letter e with acute' /// assert_eq!(Some('\u{00e9}'), chars.next()); /// assert_eq!(None, chars.next()); /// /// let mut chars = "é".chars(); /// // U+0065: 'latin small letter e' /// assert_eq!(Some('\u{0065}'), chars.next()); /// // U+0301: 'combining acute accent' /// assert_eq!(Some('\u{0301}'), chars.next()); /// assert_eq!(None, chars.next()); /// ``` /// /// This means that the contents of the first string above _will_ fit into a /// `char` while the contents of the second string _will not_. Trying to create /// a `char` literal with the contents of the second string gives an error: /// /// ```text /// error: character literal may only contain one codepoint: 'é' /// let c = 'é'; /// ^^^ /// ``` /// /// Another implication of the 4-byte fixed size of a `char` is that /// per-`char` processing can end up using a lot more memory: /// /// ``` /// let s = String::from("love: ❤️"); /// let v: Vec<char> = s.chars().collect(); /// /// assert_eq!(12, std::mem::size_of_val(&s[..])); /// assert_eq!(32, std::mem::size_of_val(&v[..])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] mod prim_char { } #[doc(primitive = "unit")] // /// The `()` type, sometimes called "unit" or "nil". /// /// The `()` type has exactly one value `()`, and is used when there /// is no other meaningful value that could be returned. `()` is most /// commonly seen implicitly: functions without a `-> ...` implicitly /// have return type `()`, that is, these are equivalent: /// /// ```rust /// fn long() -> () {} /// /// fn short() {} /// ``` /// /// The semicolon `;` can be used to discard the result of an /// expression at the end of a block, making the expression (and thus /// the block) evaluate to `()`. For example, /// /// ```rust /// fn returns_i64() -> i64 { /// 1i64 /// } /// fn returns_unit() { /// 1i64; /// } /// /// let is_i64 = { /// returns_i64() /// }; /// let is_unit = { /// returns_i64(); /// }; /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_unit { } #[doc(primitive = "pointer")] // /// Raw, unsafe pointers, `*const T`, and `*mut T`. /// /// *[See also the `std::ptr` module](ptr/index.html).* /// /// Working with raw pointers in Rust is uncommon, /// typically limited to a few patterns. /// /// Use the [`null`] and [`null_mut`] functions to create null pointers, and the /// [`is_null`] method of the `*const T` and `*mut T` types to check for null. /// The `*const T` and `*mut T` types also define the [`offset`] method, for /// pointer math. /// /// # Common ways to create raw pointers /// /// ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`). /// /// ``` /// let my_num: i32 = 10; /// let my_num_ptr: *const i32 = &my_num; /// let mut my_speed: i32 = 88; /// let my_speed_ptr: *mut i32 = &mut my_speed; /// ``` /// /// To get a pointer to a boxed value, dereference the box: /// /// ``` /// let my_num: Box<i32> = Box::new(10); /// let my_num_ptr: *const i32 = &*my_num; /// let mut my_speed: Box<i32> = Box::new(88); /// let my_speed_ptr: *mut i32 = &mut *my_speed; /// ``` /// /// This does not take ownership of the original allocation /// and requires no resource management later, /// but you must not use the pointer after its lifetime. /// /// ## 2. Consume a box (`Box<T>`). /// /// The [`into_raw`] function consumes a box and returns /// the raw pointer. It doesn't destroy `T` or deallocate any memory. /// /// ``` /// let my_speed: Box<i32> = Box::new(88); /// let my_speed: *mut i32 = Box::into_raw(my_speed); /// /// // By taking ownership of the original `Box<T>` though /// // we are obligated to put it together later to be destroyed. /// unsafe { /// drop(Box::from_raw(my_speed)); /// } /// ``` /// /// Note that here the call to [`drop`] is for clarity - it indicates /// that we are done with the given value and it should be destroyed. /// /// ## 3. Get it from C. /// /// ``` /// # #![feature(rustc_private)] /// extern crate libc; /// /// use std::mem; /// /// fn main() { /// unsafe { /// let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>()) as *mut i32; /// if my_num.is_null() { /// panic!("failed to allocate memory"); /// } /// libc::free(my_num as *mut libc::c_void); /// } /// } /// ``` /// /// Usually you wouldn't literally use `malloc` and `free` from Rust, /// but C APIs hand out a lot of pointers generally, so are a common source /// of raw pointers in Rust. /// /// [`null`]: ../std/ptr/fn.null.html /// [`null_mut`]: ../std/ptr/fn.null_mut.html /// [`is_null`]: ../std/primitive.pointer.html#method.is_null /// [`offset`]: ../std/primitive.pointer.html#method.offset /// [`into_raw`]: ../std/boxed/struct.Box.html#method.into_raw /// [`drop`]: ../std/mem/fn.drop.html #[stable(feature = "rust1", since = "1.0.0")] mod prim_pointer { } #[doc(primitive = "array")] // /// A fixed-size array, denoted `[T; N]`, for the element type, `T`, and the /// non-negative compile-time constant size, `N`. /// /// There are two syntactic forms for creating an array: /// /// * A list with each element, i.e., `[x, y, z]`. /// * A repeat expression `[x; N]`, which produces an array with `N` copies of `x`. /// The type of `x` must be [`Copy`][copy]. /// /// Arrays of sizes from 0 to 32 (inclusive) implement the following traits if /// the element type allows it: /// /// - [`Debug`][debug] /// - [`IntoIterator`][intoiterator] (implemented for `&[T; N]` and `&mut [T; N]`) /// - [`PartialEq`][partialeq], [`PartialOrd`][partialord], [`Eq`][eq], [`Ord`][ord] /// - [`Hash`][hash] /// - [`AsRef`][asref], [`AsMut`][asmut] /// - [`Borrow`][borrow], [`BorrowMut`][borrowmut] /// - [`Default`][default] /// /// This limitation on the size `N` exists because Rust does not yet support /// code that is generic over the size of an array type. `[Foo; 3]` and `[Bar; 3]` /// are instances of same generic type `[T; 3]`, but `[Foo; 3]` and `[Foo; 5]` are /// entirely different types. As a stopgap, trait implementations are /// statically generated up to size 32. /// /// Arrays of *any* size are [`Copy`][copy] if the element type is [`Copy`][copy] /// and [`Clone`][clone] if the element type is [`Clone`][clone]. This works /// because [`Copy`][copy] and [`Clone`][clone] traits are specially known /// to the compiler. /// /// Arrays coerce to [slices (`[T]`)][slice], so a slice method may be called on /// an array. Indeed, this provides most of the API for working with arrays. /// Slices have a dynamic size and do not coerce to arrays. /// /// There is no way to move elements out of an array. See [`mem::replace`][replace] /// for an alternative. /// /// # Examples /// /// ``` /// let mut array: [i32; 3] = [0; 3]; /// /// array[1] = 1; /// array[2] = 2; /// /// assert_eq!([1, 2], &array[1..]); /// /// // This loop prints: 0 1 2 /// for x in &array { /// print!("{} ", x); /// } /// ``` /// /// An array itself is not iterable: /// /// ```compile_fail,E0277 /// let array: [i32; 3] = [0; 3]; /// /// for x in array { } /// // error: the trait bound `[i32; 3]: std::iter::Iterator` is not satisfied /// ``` /// /// The solution is to coerce the array to a slice by calling a slice method: /// /// ``` /// # let array: [i32; 3] = [0; 3]; /// for x in array.iter() { } /// ``` /// /// If the array has 32 or fewer elements (see above), you can also use the /// array reference's [`IntoIterator`] implementation: /// /// ``` /// # let array: [i32; 3] = [0; 3]; /// for x in &array { } /// ``` /// /// [slice]: primitive.slice.html /// [copy]: marker/trait.Copy.html /// [clone]: clone/trait.Clone.html /// [debug]: fmt/trait.Debug.html /// [intoiterator]: iter/trait.IntoIterator.html /// [partialeq]: cmp/trait.PartialEq.html /// [partialord]: cmp/trait.PartialOrd.html /// [eq]: cmp/trait.Eq.html /// [ord]: cmp/trait.Ord.html /// [hash]: hash/trait.Hash.html /// [asref]: convert/trait.AsRef.html /// [asmut]: convert/trait.AsMut.html /// [borrow]: borrow/trait.Borrow.html /// [borrowmut]: borrow/trait.BorrowMut.html /// [default]: default/trait.Default.html /// [replace]: mem/fn.replace.html /// [`IntoIterator`]: iter/trait.IntoIterator.html /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_array { } #[doc(primitive = "slice")] #[doc(alias = "[")] #[doc(alias = "]")] #[doc(alias = "[]")] /// A dynamically-sized view into a contiguous sequence, `[T]`. /// /// *[See also the `std::slice` module](slice/index.html).* /// /// Slices are a view into a block of memory represented as a pointer and a /// length. /// /// ``` /// // slicing a Vec /// let vec = vec![1, 2, 3]; /// let int_slice = &vec[..]; /// // coercing an array to a slice /// let str_slice: &[&str] = &["one", "two", "three"]; /// ``` /// /// Slices are either mutable or shared. The shared slice type is `&[T]`, /// while the mutable slice type is `&mut [T]`, where `T` represents the element /// type. For example, you can mutate the block of memory that a mutable slice /// points to: /// /// ``` /// let mut x = [1, 2, 3]; /// let x = &mut x[..]; // Take a full slice of `x`. /// x[1] = 7; /// assert_eq!(x, &[1, 7, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] mod prim_slice { } #[doc(primitive = "str")] // /// String slices. /// /// *[See also the `std::str` module](str/index.html).* /// /// The `str` type, also called a 'string slice', is the most primitive string /// type. It is usually seen in its borrowed form, `&str`. It is also the type /// of string literals, `&'static str`. /// /// String slices are always valid UTF-8. /// /// # Examples /// /// String literals are string slices: /// /// ``` /// let hello = "Hello, world!"; /// /// // with an explicit type annotation /// let hello: &'static str = "Hello, world!"; /// ``` /// /// They are `'static` because they're stored directly in the final binary, and /// so will be valid for the `'static` duration. /// /// # Representation /// /// A `&str` is made up of two components: a pointer to some bytes, and a /// length. You can look at these with the [`as_ptr`] and [`len`] methods: /// /// ``` /// use std::slice; /// use std::str; /// /// let story = "Once upon a time..."; /// /// let ptr = story.as_ptr(); /// let len = story.len(); /// /// // story has nineteen bytes /// assert_eq!(19, len); /// /// // We can re-build a str out of ptr and len. This is all unsafe because /// // we are responsible for making sure the two components are valid: /// let s = unsafe { /// // First, we build a &[u8]... /// let slice = slice::from_raw_parts(ptr, len); /// /// // ... and then convert that slice into a string slice /// str::from_utf8(slice) /// }; /// /// assert_eq!(s, Ok(story)); /// ``` /// /// [`as_ptr`]: #method.as_ptr /// [`len`]: #method.len /// /// Note: This example shows the internals of `&str`. `unsafe` should not be /// used to get a string slice under normal circumstances. Use `as_slice` /// instead. #[stable(feature = "rust1", since = "1.0.0")] mod prim_str { } #[doc(primitive = "tuple")] #[doc(alias = "(")] #[doc(alias = ")")] #[doc(alias = "()")] // /// A finite heterogeneous sequence, `(T, U, ..)`. /// /// Let's cover each of those in turn: /// /// Tuples are *finite*. In other words, a tuple has a length. Here's a tuple /// of length `3`: /// /// ``` /// ("hello", 5, 'c'); /// ``` /// /// 'Length' is also sometimes called 'arity' here; each tuple of a different /// length is a different, distinct type. /// /// Tuples are *heterogeneous*. This means that each element of the tuple can /// have a different type. In that tuple above, it has the type: /// /// ``` /// # let _: /// (&'static str, i32, char) /// # = ("hello", 5, 'c'); /// ``` /// /// Tuples are a *sequence*. This means that they can be accessed by position; /// this is called 'tuple indexing', and it looks like this: /// /// ```rust /// let tuple = ("hello", 5, 'c'); /// /// assert_eq!(tuple.0, "hello"); /// assert_eq!(tuple.1, 5); /// assert_eq!(tuple.2, 'c'); /// ``` /// /// For more about tuples, see [the book](../book/ch03-02-data-types.html#the-tuple-type). /// /// # Trait implementations /// /// If every type inside a tuple implements one of the following traits, then a /// tuple itself also implements it. /// /// * [`Clone`] /// * [`Copy`] /// * [`PartialEq`] /// * [`Eq`] /// * [`PartialOrd`] /// * [`Ord`] /// * [`Debug`] /// * [`Default`] /// * [`Hash`] /// /// [`Clone`]: clone/trait.Clone.html /// [`Copy`]: marker/trait.Copy.html /// [`PartialEq`]: cmp/trait.PartialEq.html /// [`Eq`]: cmp/trait.Eq.html /// [`PartialOrd`]: cmp/trait.PartialOrd.html /// [`Ord`]: cmp/trait.Ord.html /// [`Debug`]: fmt/trait.Debug.html /// [`Default`]: default/trait.Default.html /// [`Hash`]: hash/trait.Hash.html /// /// Due to a temporary restriction in Rust's type system, these traits are only /// implemented on tuples of arity 12 or less. In the future, this may change. /// /// # Examples /// /// Basic usage: /// /// ``` /// let tuple = ("hello", 5, 'c'); /// /// assert_eq!(tuple.0, "hello"); /// ``` /// /// Tuples are often used as a return type when you want to return more than /// one value: /// /// ``` /// fn calculate_point() -> (i32, i32) { /// // Don't do a calculation, that's not the point of the example /// (4, 5) /// } /// /// let point = calculate_point(); /// /// assert_eq!(point.0, 4); /// assert_eq!(point.1, 5); /// /// // Combining this with patterns can be nicer. /// /// let (x, y) = calculate_point(); /// /// assert_eq!(x, 4); /// assert_eq!(y, 5); /// ``` /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_tuple { } #[doc(primitive = "f32")] /// The 32-bit floating point type. /// /// *[See also the `std::f32` module](f32/index.html).* /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_f32 { } #[doc(primitive = "f64")] // /// The 64-bit floating point type. /// /// *[See also the `std::f64` module](f64/index.html).* /// #[stable(feature = "rust1", since = "1.0.0")] mod prim_f64 { } #[doc(primitive = "i8")] // /// The 8-bit signed integer type. /// /// *[See also the `std::i8` module](i8/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_i8 { } #[doc(primitive = "i16")] // /// The 16-bit signed integer type. /// /// *[See also the `std::i16` module](i16/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_i16 { } #[doc(primitive = "i32")] // /// The 32-bit signed integer type. /// /// *[See also the `std::i32` module](i32/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_i32 { } #[doc(primitive = "i64")] // /// The 64-bit signed integer type. /// /// *[See also the `std::i64` module](i64/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_i64 { } #[doc(primitive = "i128")] // /// The 128-bit signed integer type. /// /// *[See also the `std::i128` module](i128/index.html).* #[stable(feature = "i128", since="1.26.0")] mod prim_i128 { } #[doc(primitive = "u8")] // /// The 8-bit unsigned integer type. /// /// *[See also the `std::u8` module](u8/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_u8 { } #[doc(primitive = "u16")] // /// The 16-bit unsigned integer type. /// /// *[See also the `std::u16` module](u16/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_u16 { } #[doc(primitive = "u32")] // /// The 32-bit unsigned integer type. /// /// *[See also the `std::u32` module](u32/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_u32 { } #[doc(primitive = "u64")] // /// The 64-bit unsigned integer type. /// /// *[See also the `std::u64` module](u64/index.html).* #[stable(feature = "rust1", since = "1.0.0")] mod prim_u64 { } #[doc(primitive = "u128")] // /// The 128-bit unsigned integer type. /// /// *[See also the `std::u128` module](u128/index.html).* #[stable(feature = "i128", since="1.26.0")] mod prim_u128 { } #[doc(primitive = "isize")] // /// The pointer-sized signed integer type. /// /// *[See also the `std::isize` module](isize/index.html).* /// /// The size of this primitive is how many bytes it takes to reference any /// location in memory. For example, on a 32 bit target, this is 4 bytes /// and on a 64 bit target, this is 8 bytes. #[stable(feature = "rust1", since = "1.0.0")] mod prim_isize { } #[doc(primitive = "usize")] // /// The pointer-sized unsigned integer type. /// /// *[See also the `std::usize` module](usize/index.html).* /// /// The size of this primitive is how many bytes it takes to reference any /// location in memory. For example, on a 32 bit target, this is 4 bytes /// and on a 64 bit target, this is 8 bytes. #[stable(feature = "rust1", since = "1.0.0")] mod prim_usize { } #[doc(primitive = "reference")] #[doc(alias = "&")] // /// References, both shared and mutable. /// /// A reference represents a borrow of some owned value. You can get one by using the `&` or `&mut` /// operators on a value, or by using a `ref` or `ref mut` pattern. /// /// For those familiar with pointers, a reference is just a pointer that is assumed to not be null. /// In fact, `Option<&T>` has the same memory representation as a nullable pointer, and can be /// passed across FFI boundaries as such. /// /// In most cases, references can be used much like the original value. Field access, method /// calling, and indexing work the same (save for mutability rules, of course). In addition, the /// comparison operators transparently defer to the referent's implementation, allowing references /// to be compared the same as owned values. /// /// References have a lifetime attached to them, which represents the scope for which the borrow is /// valid. A lifetime is said to "outlive" another one if its representative scope is as long or /// longer than the other. The `'static` lifetime is the longest lifetime, which represents the /// total life of the program. For example, string literals have a `'static` lifetime because the /// text data is embedded into the binary of the program, rather than in an allocation that needs /// to be dynamically managed. /// /// `&mut T` references can be freely coerced into `&T` references with the same referent type, and /// references with longer lifetimes can be freely coerced into references with shorter ones. /// /// Reference equality by address, instead of comparing the values pointed to, is accomplished via /// implicit reference-pointer coercion and raw pointer equality via [`ptr::eq`], while /// [`PartialEq`] compares values. /// /// [`ptr::eq`]: ptr/fn.eq.html /// [`PartialEq`]: cmp/trait.PartialEq.html /// /// ``` /// use std::ptr; /// /// let five = 5; /// let other_five = 5; /// let five_ref = &five; /// let same_five_ref = &five; /// let other_five_ref = &other_five; /// /// assert!(five_ref == same_five_ref); /// assert!(five_ref == other_five_ref); /// /// assert!(ptr::eq(five_ref, same_five_ref)); /// assert!(!ptr::eq(five_ref, other_five_ref)); /// ``` /// /// For more information on how to use references, see [the book's section on "References and /// Borrowing"][book-refs]. /// /// [book-refs]: ../book/ch04-02-references-and-borrowing.html /// /// # Trait implementations /// /// The following traits are implemented for all `&T`, regardless of the type of its referent: /// /// * [`Copy`] /// * [`Clone`] \(Note that this will not defer to `T`'s `Clone` implementation if it exists!) /// * [`Deref`] /// * [`Borrow`] /// * [`Pointer`] /// /// [`Copy`]: marker/trait.Copy.html /// [`Clone`]: clone/trait.Clone.html /// [`Deref`]: ops/trait.Deref.html /// [`Borrow`]: borrow/trait.Borrow.html /// [`Pointer`]: fmt/trait.Pointer.html /// /// `&mut T` references get all of the above except `Copy` and `Clone` (to prevent creating /// multiple simultaneous mutable borrows), plus the following, regardless of the type of its /// referent: /// /// * [`DerefMut`] /// * [`BorrowMut`] /// /// [`DerefMut`]: ops/trait.DerefMut.html /// [`BorrowMut`]: borrow/trait.BorrowMut.html /// /// The following traits are implemented on `&T` references if the underlying `T` also implements /// that trait: /// /// * All the traits in [`std::fmt`] except [`Pointer`] and [`fmt::Write`] /// * [`PartialOrd`] /// * [`Ord`] /// * [`PartialEq`] /// * [`Eq`] /// * [`AsRef`] /// * [`Fn`] \(in addition, `&T` references get [`FnMut`] and [`FnOnce`] if `T: Fn`) /// * [`Hash`] /// * [`ToSocketAddrs`] /// /// [`std::fmt`]: fmt/index.html /// [`fmt::Write`]: fmt/trait.Write.html /// [`PartialOrd`]: cmp/trait.PartialOrd.html /// [`Ord`]: cmp/trait.Ord.html /// [`PartialEq`]: cmp/trait.PartialEq.html /// [`Eq`]: cmp/trait.Eq.html /// [`AsRef`]: convert/trait.AsRef.html /// [`Fn`]: ops/trait.Fn.html /// [`FnMut`]: ops/trait.FnMut.html /// [`FnOnce`]: ops/trait.FnOnce.html /// [`Hash`]: hash/trait.Hash.html /// [`ToSocketAddrs`]: net/trait.ToSocketAddrs.html /// /// `&mut T` references get all of the above except `ToSocketAddrs`, plus the following, if `T` /// implements that trait: /// /// * [`AsMut`] /// * [`FnMut`] \(in addition, `&mut T` references get [`FnOnce`] if `T: FnMut`) /// * [`fmt::Write`] /// * [`Iterator`] /// * [`DoubleEndedIterator`] /// * [`ExactSizeIterator`] /// * [`FusedIterator`] /// * [`TrustedLen`] /// * [`Send`] \(note that `&T` references only get `Send` if `T: Sync`) /// * [`io::Write`] /// * [`Read`] /// * [`Seek`] /// * [`BufRead`] /// /// [`AsMut`]: convert/trait.AsMut.html /// [`Iterator`]: iter/trait.Iterator.html /// [`DoubleEndedIterator`]: iter/trait.DoubleEndedIterator.html /// [`ExactSizeIterator`]: iter/trait.ExactSizeIterator.html /// [`FusedIterator`]: iter/trait.FusedIterator.html /// [`TrustedLen`]: iter/trait.TrustedLen.html /// [`Send`]: marker/trait.Send.html /// [`io::Write`]: io/trait.Write.html /// [`Read`]: io/trait.Read.html /// [`Seek`]: io/trait.Seek.html /// [`BufRead`]: io/trait.BufRead.html /// /// Note that due to method call deref coercion, simply calling a trait method will act like they /// work on references as well as they do on owned values! The implementations described here are /// meant for generic contexts, where the final type `T` is a type parameter or otherwise not /// locally known. #[stable(feature = "rust1", since = "1.0.0")] mod prim_ref { } #[doc(primitive = "fn")] // /// Function pointers, like `fn(usize) -> bool`. /// /// *See also the traits [`Fn`], [`FnMut`], and [`FnOnce`].* /// /// [`Fn`]: ops/trait.Fn.html /// [`FnMut`]: ops/trait.FnMut.html /// [`FnOnce`]: ops/trait.FnOnce.html /// /// Plain function pointers are obtained by casting either plain functions, or closures that don't /// capture an environment: /// /// ``` /// fn add_one(x: usize) -> usize { /// x + 1 /// } /// /// let ptr: fn(usize) -> usize = add_one; /// assert_eq!(ptr(5), 6); /// /// let clos: fn(usize) -> usize = |x| x + 5; /// assert_eq!(clos(5), 10); /// ``` /// /// In addition to varying based on their signature, function pointers come in two flavors: safe /// and unsafe. Plain `fn()` function pointers can only point to safe functions, /// while `unsafe fn()` function pointers can point to safe or unsafe functions. /// /// ``` /// fn add_one(x: usize) -> usize { /// x + 1 /// } /// /// unsafe fn add_one_unsafely(x: usize) -> usize { /// x + 1 /// } /// /// let safe_ptr: fn(usize) -> usize = add_one; /// /// //ERROR: mismatched types: expected normal fn, found unsafe fn /// //let bad_ptr: fn(usize) -> usize = add_one_unsafely; /// /// let unsafe_ptr: unsafe fn(usize) -> usize = add_one_unsafely; /// let really_safe_ptr: unsafe fn(usize) -> usize = add_one; /// ``` /// /// On top of that, function pointers can vary based on what ABI they use. This is achieved by /// adding the `extern` keyword to the type name, followed by the ABI in question. For example, /// `fn()` is different from `extern "C" fn()`, which itself is different from `extern "stdcall" /// fn()`, and so on for the various ABIs that Rust supports. Non-`extern` functions have an ABI /// of `"Rust"`, and `extern` functions without an explicit ABI have an ABI of `"C"`. For more /// information, see [the nomicon's section on foreign calling conventions][nomicon-abi]. /// /// [nomicon-abi]: ../nomicon/ffi.html#foreign-calling-conventions /// /// Extern function declarations with the "C" or "cdecl" ABIs can also be *variadic*, allowing them /// to be called with a variable number of arguments. Normal rust functions, even those with an /// `extern "ABI"`, cannot be variadic. For more information, see [the nomicon's section on /// variadic functions][nomicon-variadic]. /// /// [nomicon-variadic]: ../nomicon/ffi.html#variadic-functions /// /// These markers can be combined, so `unsafe extern "stdcall" fn()` is a valid type. /// /// Like references in rust, function pointers are assumed to not be null, so if you want to pass a /// function pointer over FFI and be able to accommodate null pointers, make your type /// `Option<fn()>` with your required signature. /// /// Function pointers implement the following traits: /// /// * [`Clone`] /// * [`PartialEq`] /// * [`Eq`] /// * [`PartialOrd`] /// * [`Ord`] /// * [`Hash`] /// * [`Pointer`] /// * [`Debug`] /// /// [`Clone`]: clone/trait.Clone.html /// [`PartialEq`]: cmp/trait.PartialEq.html /// [`Eq`]: cmp/trait.Eq.html /// [`PartialOrd`]: cmp/trait.PartialOrd.html /// [`Ord`]: cmp/trait.Ord.html /// [`Hash`]: hash/trait.Hash.html /// [`Pointer`]: fmt/trait.Pointer.html /// [`Debug`]: fmt/trait.Debug.html /// /// Due to a temporary restriction in Rust's type system, these traits are only implemented on /// functions that take 12 arguments or less, with the `"Rust"` and `"C"` ABIs. In the future, this /// may change. /// /// In addition, function pointers of *any* signature, ABI, or safety are [`Copy`], and all *safe* /// function pointers implement [`Fn`], [`FnMut`], and [`FnOnce`]. This works because these traits /// are specially known to the compiler. /// /// [`Copy`]: marker/trait.Copy.html #[stable(feature = "rust1", since = "1.0.0")] mod prim_fn { }