1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
//! Traits for conversions between types. //! //! The traits in this module provide a way to convert from one type to another type. //! Each trait serves a different purpose: //! //! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions //! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions //! - Implement the [`From`] trait for consuming value-to-value conversions //! - Implement the [`Into`] trait for consuming value-to-value conversions to types //! outside the current crate //! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`], //! but should be implemented when the conversion can fail. //! //! The traits in this module are often used as trait bounds for generic functions such that to //! arguments of multiple types are supported. See the documentation of each trait for examples. //! //! As a library author, you should always prefer implementing [`From<T>`][`From`] or //! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`], //! as [`From`] and [`TryFrom`] provide greater flexibility and offer //! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a //! blanket implementation in the standard library. Only implement [`Into`] or [`TryInto`] //! when a conversion to a type outside the current crate is required. //! //! # Generic Implementations //! //! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference //! - [`From`]`<U> for T` implies [`Into`]`<T> for U` //! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U` //! - [`From`] and [`Into`] are reflexive, which means that all types can //! `into` themselves and `from` themselves //! //! See each trait for usage examples. //! //! [`Into`]: trait.Into.html //! [`From`]: trait.From.html //! [`TryFrom`]: trait.TryFrom.html //! [`TryInto`]: trait.TryInto.html //! [`AsRef`]: trait.AsRef.html //! [`AsMut`]: trait.AsMut.html #![stable(feature = "rust1", since = "1.0.0")] use crate::fmt; /// An identity function. /// /// Two things are important to note about this function: /// /// - It is not always equivalent to a closure like `|x| x` since the /// closure may coerce `x` into a different type. /// /// - It moves the input `x` passed to the function. /// /// While it might seem strange to have a function that just returns back the /// input, there are some interesting uses. /// /// # Examples /// /// Using `identity` to do nothing among other interesting functions: /// /// ```rust /// use std::convert::identity; /// /// fn manipulation(x: u32) -> u32 { /// // Let's assume that this function does something interesting. /// x + 1 /// } /// /// let _arr = &[identity, manipulation]; /// ``` /// /// Using `identity` to get a function that changes nothing in a conditional: /// /// ```rust /// use std::convert::identity; /// /// # let condition = true; /// /// # fn manipulation(x: u32) -> u32 { x + 1 } /// /// let do_stuff = if condition { manipulation } else { identity }; /// /// // do more interesting stuff.. /// /// let _results = do_stuff(42); /// ``` /// /// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`: /// /// ```rust /// use std::convert::identity; /// /// let iter = vec![Some(1), None, Some(3)].into_iter(); /// let filtered = iter.filter_map(identity).collect::<Vec<_>>(); /// assert_eq!(vec![1, 3], filtered); /// ``` #[stable(feature = "convert_id", since = "1.33.0")] #[inline] pub const fn identity<T>(x: T) -> T { x } /// Used to do a cheap reference-to-reference conversion. /// /// This trait is similar to [`AsMut`] which is used for converting between mutable references. /// If you need to do a costly conversion it is better to implement [`From`] with type /// `&T` or write a custom function. /// /// `AsRef` has the same signature as [`Borrow`], but `Borrow` is different in few aspects: /// /// - Unlike `AsRef`, `Borrow` has a blanket impl for any `T`, and can be used to accept either /// a reference or a value. /// - `Borrow` also requires that `Hash`, `Eq` and `Ord` for borrowed value are /// equivalent to those of the owned value. For this reason, if you want to /// borrow only a single field of a struct you can implement `AsRef`, but not `Borrow`. /// /// [`Borrow`]: ../../std/borrow/trait.Borrow.html /// /// **Note: This trait must not fail**. If the conversion can fail, use a /// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`]. /// /// [`Option<T>`]: ../../std/option/enum.Option.html /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// /// # Generic Implementations /// /// - `AsRef` auto-dereferences if the inner type is a reference or a mutable /// reference (e.g.: `foo.as_ref()` will work the same if `foo` has type /// `&mut Foo` or `&&mut Foo`) /// /// # Examples /// /// By using trait bounds we can accept arguments of different types as long as they can be /// converted a the specified type `T`. /// /// For example: By creating a generic function that takes an `AsRef<str>` we express that we /// want to accept all references that can be converted to `&str` as an argument. /// Since both [`String`] and `&str` implement `AsRef<str>` we can accept both as input argument. /// /// [`String`]: ../../std/string/struct.String.html /// /// ``` /// fn is_hello<T: AsRef<str>>(s: T) { /// assert_eq!("hello", s.as_ref()); /// } /// /// let s = "hello"; /// is_hello(s); /// /// let s = "hello".to_string(); /// is_hello(s); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub trait AsRef<T: ?Sized> { /// Performs the conversion. #[stable(feature = "rust1", since = "1.0.0")] fn as_ref(&self) -> &T; } /// Used to do a cheap mutable-to-mutable reference conversion. /// /// This trait is similar to [`AsRef`] but used for converting between mutable /// references. If you need to do a costly conversion it is better to /// implement [`From`] with type `&mut T` or write a custom function. /// /// **Note: This trait must not fail**. If the conversion can fail, use a /// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`]. /// /// [`Option<T>`]: ../../std/option/enum.Option.html /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// /// # Generic Implementations /// /// - `AsMut` auto-dereferences if the inner type is a mutable reference /// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` /// or `&mut &mut Foo`) /// /// # Examples /// /// Using `AsMut` as trait bound for a generic function we can accept all mutable references /// that can be converted to type `&mut T`. Because [`Box<T>`] implements `AsMut<T>` we can /// write a function `add_one`that takes all arguments that can be converted to `&mut u64`. /// Because [`Box<T>`] implements `AsMut<T>` `add_one` accepts arguments of type /// `&mut Box<u64>` as well: /// /// ``` /// fn add_one<T: AsMut<u64>>(num: &mut T) { /// *num.as_mut() += 1; /// } /// /// let mut boxed_num = Box::new(0); /// add_one(&mut boxed_num); /// assert_eq!(*boxed_num, 1); /// ``` /// /// [`Box<T>`]: ../../std/boxed/struct.Box.html #[stable(feature = "rust1", since = "1.0.0")] pub trait AsMut<T: ?Sized> { /// Performs the conversion. #[stable(feature = "rust1", since = "1.0.0")] fn as_mut(&mut self) -> &mut T; } /// A value-to-value conversion that consumes the input value. The /// opposite of [`From`]. /// /// One should only implement `Into` if a conversion to a type outside the current crate is /// required. Otherwise one should always prefer implementing [`From`] over `Into` because /// implementing [`From`] automatically provides one with a implementation of `Into` thanks to /// the blanket implementation in the standard library. [`From`] cannot do these type of /// conversions because of Rust's orphaning rules. /// /// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`]. /// /// # Generic Implementations /// /// - [`From`]`<T> for U` implies `Into<U> for T` /// - `Into` is reflexive, which means that `Into<T> for T` is implemented /// /// # Implementing `Into` for conversions to external types /// /// If the destination type is not part of the current crate /// then you can't implement [`From`] directly. /// For example, take this code: /// /// ```compile_fail /// struct Wrapper<T>(Vec<T>); /// impl<T> From<Wrapper<T>> for Vec<T> { /// fn from(w: Wrapper<T>) -> Vec<T> { /// w.0 /// } /// } /// ``` /// This will fail to compile because we cannot implement a trait for a type /// if both the trait and the type are not defined by the current crate. /// This is due to Rust's orphaning rules. To bypass this, you can implement `Into` directly: /// /// ``` /// struct Wrapper<T>(Vec<T>); /// impl<T> Into<Vec<T>> for Wrapper<T> { /// fn into(self) -> Vec<T> { /// self.0 /// } /// } /// ``` /// /// It is important to understand that `Into` does not provide a [`From`] implementation /// (as [`From`] does with `Into`). Therefore, you should always try to implement [`From`] /// and then fall back to `Into` if [`From`] can't be implemented. /// /// Prefer using `Into` over [`From`] when specifying trait bounds on a generic function /// to ensure that types that only implement `Into` can be used as well. /// /// # Examples /// /// [`String`] implements `Into<Vec<u8>>`: /// /// In order to express that we want a generic function to take all arguments that can be /// converted to a specified type `T`, we can use a trait bound of `Into<T>`. /// For example: The function `is_hello` takes all arguments that can be converted into a /// `Vec<u8>`. /// /// ``` /// fn is_hello<T: Into<Vec<u8>>>(s: T) { /// let bytes = b"hello".to_vec(); /// assert_eq!(bytes, s.into()); /// } /// /// let s = "hello".to_string(); /// is_hello(s); /// ``` /// /// [`TryInto`]: trait.TryInto.html /// [`Option<T>`]: ../../std/option/enum.Option.html /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// [`String`]: ../../std/string/struct.String.html /// [`From`]: trait.From.html /// [`into`]: trait.Into.html#tymethod.into #[stable(feature = "rust1", since = "1.0.0")] pub trait Into<T>: Sized { /// Performs the conversion. #[stable(feature = "rust1", since = "1.0.0")] fn into(self) -> T; } /// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of /// [`Into`]. /// /// One should always prefer implementing `From` over [`Into`] /// because implementing `From` automatically provides one with a implementation of [`Into`] /// thanks to the blanket implementation in the standard library. /// /// Only implement [`Into`] if a conversion to a type outside the current crate is required. /// `From` cannot do these type of conversions because of Rust's orphaning rules. /// See [`Into`] for more details. /// /// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function. /// This way, types that directly implement [`Into`] can be used as arguments as well. /// /// The `From` is also very useful when performing error handling. When constructing a function /// that is capable of failing, the return type will generally be of the form `Result<T, E>`. /// The `From` trait simplifies error handling by allowing a function to return a single error type /// that encapsulate multiple error types. See the "Examples" section and [the book][book] for more /// details. /// /// **Note: This trait must not fail**. If the conversion can fail, use [`TryFrom`]. /// /// # Generic Implementations /// /// - `From<T> for U` implies [`Into`]`<U> for T` /// - `From` is reflexive, which means that `From<T> for T` is implemented /// /// # Examples /// /// [`String`] implements `From<&str>`: /// /// An explicit conversion from a `&str` to a String is done as follows: /// /// ``` /// let string = "hello".to_string(); /// let other_string = String::from("hello"); /// /// assert_eq!(string, other_string); /// ``` /// /// While performing error handling it is often useful to implement `From` for your own error type. /// By converting underlying error types to our own custom error type that encapsulates the /// underlying error type, we can return a single error type without losing information on the /// underlying cause. The '?' operator automatically converts the underlying error type to our /// custom error type by calling `Into<CliError>::into` which is automatically provided when /// implementing `From`. The compiler then infers which implementation of `Into` should be used. /// /// ``` /// use std::fs; /// use std::io; /// use std::num; /// /// enum CliError { /// IoError(io::Error), /// ParseError(num::ParseIntError), /// } /// /// impl From<io::Error> for CliError { /// fn from(error: io::Error) -> Self { /// CliError::IoError(error) /// } /// } /// /// impl From<num::ParseIntError> for CliError { /// fn from(error: num::ParseIntError) -> Self { /// CliError::ParseError(error) /// } /// } /// /// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> { /// let mut contents = fs::read_to_string(&file_name)?; /// let num: i32 = contents.trim().parse()?; /// Ok(num) /// } /// ``` /// /// [`TryFrom`]: trait.TryFrom.html /// [`Option<T>`]: ../../std/option/enum.Option.html /// [`Result<T, E>`]: ../../std/result/enum.Result.html /// [`String`]: ../../std/string/struct.String.html /// [`Into`]: trait.Into.html /// [`from`]: trait.From.html#tymethod.from /// [book]: ../../book/ch09-00-error-handling.html #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( on( all(_Self="&str", T="std::string::String"), note="to coerce a `{T}` into a `{Self}`, use `&*` as a prefix", ) )] pub trait From<T>: Sized { /// Performs the conversion. #[stable(feature = "rust1", since = "1.0.0")] fn from(_: T) -> Self; } /// An attempted conversion that consumes `self`, which may or may not be /// expensive. /// /// Library authors should usually not directly implement this trait, /// but should prefer implementing the [`TryFrom`] trait, which offers /// greater flexibility and provides an equivalent `TryInto` /// implementation for free, thanks to a blanket implementation in the /// standard library. For more information on this, see the /// documentation for [`Into`]. /// /// # Implementing `TryInto` /// /// This suffers the same restrictions and reasoning as implementing /// [`Into`], see there for details. /// /// [`TryFrom`]: trait.TryFrom.html /// [`Into`]: trait.Into.html #[stable(feature = "try_from", since = "1.34.0")] pub trait TryInto<T>: Sized { /// The type returned in the event of a conversion error. #[stable(feature = "try_from", since = "1.34.0")] type Error; /// Performs the conversion. #[stable(feature = "try_from", since = "1.34.0")] fn try_into(self) -> Result<T, Self::Error>; } /// Simple and safe type conversions that may fail in a controlled /// way under some circumstances. It is the reciprocal of [`TryInto`]. /// /// This is useful when you are doing a type conversion that may /// trivially succeed but may also need special handling. /// For example, there is no way to convert an `i64` into an `i32` /// using the [`From`] trait, because an `i64` may contain a value /// that an `i32` cannot represent and so the conversion would lose data. /// This might be handled by truncating the `i64` to an `i32` (essentially /// giving the `i64`'s value modulo `i32::MAX`) or by simply returning /// `i32::MAX`, or by some other method. The `From` trait is intended /// for perfect conversions, so the `TryFrom` trait informs the /// programmer when a type conversion could go bad and lets them /// decide how to handle it. /// /// # Generic Implementations /// /// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T` /// - [`try_from`] is reflexive, which means that `TryFrom<T> for T` /// is implemented and cannot fail -- the associated `Error` type for /// calling `T::try_from()` on a value of type `T` is `Infallible`. /// When the `!` type is stablized `Infallible` and `!` will be /// equivalent. /// /// `TryFrom<T>` can be implemented as follows: /// /// ``` /// use std::convert::TryFrom; /// /// struct SuperiorThanZero(i32); /// /// impl TryFrom<i32> for SuperiorThanZero { /// type Error = &'static str; /// /// fn try_from(value: i32) -> Result<Self, Self::Error> { /// if value < 0 { /// Err("SuperiorThanZero only accepts value superior than zero!") /// } else { /// Ok(SuperiorThanZero(value)) /// } /// } /// } /// ``` /// /// # Examples /// /// As described, [`i32`] implements `TryFrom<i64>`: /// /// ``` /// use std::convert::TryFrom; /// /// let big_number = 1_000_000_000_000i64; /// // Silently truncates `big_number`, requires detecting /// // and handling the truncation after the fact. /// let smaller_number = big_number as i32; /// assert_eq!(smaller_number, -727379968); /// /// // Returns an error because `big_number` is too big to /// // fit in an `i32`. /// let try_smaller_number = i32::try_from(big_number); /// assert!(try_smaller_number.is_err()); /// /// // Returns `Ok(3)`. /// let try_successful_smaller_number = i32::try_from(3); /// assert!(try_successful_smaller_number.is_ok()); /// ``` /// /// [`try_from`]: trait.TryFrom.html#tymethod.try_from /// [`TryInto`]: trait.TryInto.html #[stable(feature = "try_from", since = "1.34.0")] pub trait TryFrom<T>: Sized { /// The type returned in the event of a conversion error. #[stable(feature = "try_from", since = "1.34.0")] type Error; /// Performs the conversion. #[stable(feature = "try_from", since = "1.34.0")] fn try_from(value: T) -> Result<Self, Self::Error>; } //////////////////////////////////////////////////////////////////////////////// // GENERIC IMPLS //////////////////////////////////////////////////////////////////////////////// // As lifts over & #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized, U: ?Sized> AsRef<U> for &T where T: AsRef<U> { fn as_ref(&self) -> &U { <T as AsRef<U>>::as_ref(*self) } } // As lifts over &mut #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized, U: ?Sized> AsRef<U> for &mut T where T: AsRef<U> { fn as_ref(&self) -> &U { <T as AsRef<U>>::as_ref(*self) } } // FIXME (#45742): replace the above impls for &/&mut with the following more general one: // // As lifts over Deref // impl<D: ?Sized + Deref, U: ?Sized> AsRef<U> for D where D::Target: AsRef<U> { // fn as_ref(&self) -> &U { // self.deref().as_ref() // } // } // AsMut lifts over &mut #[stable(feature = "rust1", since = "1.0.0")] impl<T: ?Sized, U: ?Sized> AsMut<U> for &mut T where T: AsMut<U> { fn as_mut(&mut self) -> &mut U { (*self).as_mut() } } // FIXME (#45742): replace the above impl for &mut with the following more general one: // // AsMut lifts over DerefMut // impl<D: ?Sized + Deref, U: ?Sized> AsMut<U> for D where D::Target: AsMut<U> { // fn as_mut(&mut self) -> &mut U { // self.deref_mut().as_mut() // } // } // From implies Into #[stable(feature = "rust1", since = "1.0.0")] impl<T, U> Into<U> for T where U: From<T> { fn into(self) -> U { U::from(self) } } // From (and thus Into) is reflexive #[stable(feature = "rust1", since = "1.0.0")] impl<T> From<T> for T { fn from(t: T) -> T { t } } // TryFrom implies TryInto #[stable(feature = "try_from", since = "1.34.0")] impl<T, U> TryInto<U> for T where U: TryFrom<T> { type Error = U::Error; fn try_into(self) -> Result<U, U::Error> { U::try_from(self) } } // Infallible conversions are semantically equivalent to fallible conversions // with an uninhabited error type. #[stable(feature = "try_from", since = "1.34.0")] impl<T, U> TryFrom<U> for T where U: Into<T> { type Error = Infallible; fn try_from(value: U) -> Result<Self, Self::Error> { Ok(U::into(value)) } } //////////////////////////////////////////////////////////////////////////////// // CONCRETE IMPLS //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<T> AsRef<[T]> for [T] { fn as_ref(&self) -> &[T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> AsMut<[T]> for [T] { fn as_mut(&mut self) -> &mut [T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<str> for str { #[inline] fn as_ref(&self) -> &str { self } } //////////////////////////////////////////////////////////////////////////////// // THE NO-ERROR ERROR TYPE //////////////////////////////////////////////////////////////////////////////// /// The error type for errors that can never happen. /// /// Since this enum has no variant, a value of this type can never actually exist. /// This can be useful for generic APIs that use [`Result`] and parameterize the error type, /// to indicate that the result is always [`Ok`]. /// /// For example, the [`TryFrom`] trait (conversion that returns a [`Result`]) /// has a blanket implementation for all types where a reverse [`Into`] implementation exists. /// /// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error) /// impl<T, U> TryFrom<U> for T where U: Into<T> { /// type Error = Infallible; /// /// fn try_from(value: U) -> Result<Self, Infallible> { /// Ok(U::into(value)) // Never returns `Err` /// } /// } /// ``` /// /// # Future compatibility /// /// This enum has the same role as [the `!` “never” type][never], /// which is unstable in this version of Rust. /// When `!` is stabilized, we plan to make `Infallible` a type alias to it: /// /// ```ignore (illustrates future std change) /// pub type Infallible = !; /// ``` /// /// … and eventually deprecate `Infallible`. /// /// /// However there is one case where `!` syntax can be used /// before `!` is stabilized as a full-fleged type: in the position of a function’s return type. /// Specifically, it is possible implementations for two different function pointer types: /// /// ``` /// trait MyTrait {} /// impl MyTrait for fn() -> ! {} /// impl MyTrait for fn() -> std::convert::Infallible {} /// ``` /// /// With `Infallible` being an enum, this code is valid. /// However when `Infallible` becomes an alias for the never type, /// the two `impl`s will start to overlap /// and therefore will be disallowed by the language’s trait coherence rules. /// /// [`Ok`]: ../result/enum.Result.html#variant.Ok /// [`Result`]: ../result/enum.Result.html /// [`TryFrom`]: trait.TryFrom.html /// [`Into`]: trait.Into.html /// [never]: ../../std/primitive.never.html #[stable(feature = "convert_infallible", since = "1.34.0")] #[derive(Copy)] pub enum Infallible {} #[stable(feature = "convert_infallible", since = "1.34.0")] impl Clone for Infallible { fn clone(&self) -> Infallible { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl fmt::Debug for Infallible { fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl fmt::Display for Infallible { fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl PartialEq for Infallible { fn eq(&self, _: &Infallible) -> bool { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl Eq for Infallible {} #[stable(feature = "convert_infallible", since = "1.34.0")] impl PartialOrd for Infallible { fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl Ord for Infallible { fn cmp(&self, _other: &Self) -> crate::cmp::Ordering { match *self {} } } #[stable(feature = "convert_infallible", since = "1.34.0")] impl From<!> for Infallible { fn from(x: !) -> Self { x } }