1.0.0[][src]Struct std::sync::atomic::AtomicBool

#[repr(C)]
pub struct AtomicBool { /* fields omitted */ }

A boolean type which can be safely shared between threads.

This type has the same in-memory representation as a bool.

Methods

impl AtomicBool[src]

pub const fn new(v: bool) -> AtomicBool[src]

Creates a new AtomicBool.

Examples

use std::sync::atomic::AtomicBool;

let atomic_true  = AtomicBool::new(true);
let atomic_false = AtomicBool::new(false);Run

pub fn get_mut(&mut self) -> &mut bool1.15.0[src]

Returns a mutable reference to the underlying bool.

This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let mut some_bool = AtomicBool::new(true);
assert_eq!(*some_bool.get_mut(), true);
*some_bool.get_mut() = false;
assert_eq!(some_bool.load(Ordering::SeqCst), false);Run

pub fn into_inner(self) -> bool1.15.0[src]

Consumes the atomic and returns the contained value.

This is safe because passing self by value guarantees that no other threads are concurrently accessing the atomic data.

Examples

use std::sync::atomic::AtomicBool;

let some_bool = AtomicBool::new(true);
assert_eq!(some_bool.into_inner(), true);Run

pub fn load(&self, order: Ordering) -> bool[src]

Loads a value from the bool.

load takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.

Panics

Panics if order is Release or AcqRel.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.load(Ordering::Relaxed), true);Run

pub fn store(&self, val: bool, order: Ordering)[src]

Stores a value into the bool.

store takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.

Panics

Panics if order is Acquire or AcqRel.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

some_bool.store(false, Ordering::Relaxed);
assert_eq!(some_bool.load(Ordering::Relaxed), false);Run

pub fn swap(&self, val: bool, order: Ordering) -> bool[src]

Stores a value into the bool, returning the previous value.

swap takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);Run

pub fn compare_and_swap(
    &self,
    current: bool,
    new: bool,
    order: Ordering
) -> bool
[src]

Stores a value into the bool if the current value is the same as the current value.

The return value is always the previous value. If it is equal to current, then the value was updated.

compare_and_swap also takes an Ordering argument which describes the memory ordering of this operation. Notice that even when using AcqRel, the operation might fail and hence just perform an Acquire load, but not have Release semantics. Using Acquire makes the store part of this operation Relaxed if it happens, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
assert_eq!(some_bool.load(Ordering::Relaxed), false);

assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
assert_eq!(some_bool.load(Ordering::Relaxed), false);Run

pub fn compare_exchange(
    &self,
    current: bool,
    new: bool,
    success: Ordering,
    failure: Ordering
) -> Result<bool, bool>
1.10.0[src]

Stores a value into the bool if the current value is the same as the current value.

The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal to current.

compare_exchange takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering if the operation succeeds while the second describes the required ordering when the operation fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed and must be equivalent to or weaker than the success ordering.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let some_bool = AtomicBool::new(true);

assert_eq!(some_bool.compare_exchange(true,
                                      false,
                                      Ordering::Acquire,
                                      Ordering::Relaxed),
           Ok(true));
assert_eq!(some_bool.load(Ordering::Relaxed), false);

assert_eq!(some_bool.compare_exchange(true, true,
                                      Ordering::SeqCst,
                                      Ordering::Acquire),
           Err(false));
assert_eq!(some_bool.load(Ordering::Relaxed), false);Run

pub fn compare_exchange_weak(
    &self,
    current: bool,
    new: bool,
    success: Ordering,
    failure: Ordering
) -> Result<bool, bool>
1.10.0[src]

Stores a value into the bool if the current value is the same as the current value.

Unlike compare_exchange, this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.

compare_exchange_weak takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering if the operation succeeds while the second describes the required ordering when the operation fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed and must be equivalent to or weaker than the success ordering.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let val = AtomicBool::new(false);

let new = true;
let mut old = val.load(Ordering::Relaxed);
loop {
    match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
        Ok(_) => break,
        Err(x) => old = x,
    }
}Run

pub fn fetch_and(&self, val: bool, order: Ordering) -> bool[src]

Logical "and" with a boolean value.

Performs a logical "and" operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_and takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);Run

pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool[src]

Logical "nand" with a boolean value.

Performs a logical "nand" operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_nand takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), true);Run

pub fn fetch_or(&self, val: bool, order: Ordering) -> bool[src]

Logical "or" with a boolean value.

Performs a logical "or" operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_or takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);Run

pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool[src]

Logical "xor" with a boolean value.

Performs a logical "xor" operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_xor takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Examples

use std::sync::atomic::{AtomicBool, Ordering};

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), true);

let foo = AtomicBool::new(true);
assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
assert_eq!(foo.load(Ordering::SeqCst), false);

let foo = AtomicBool::new(false);
assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
assert_eq!(foo.load(Ordering::SeqCst), false);Run

Trait Implementations

impl From<bool> for AtomicBool1.24.0[src]

fn from(b: bool) -> AtomicBool[src]

Converts a bool into an AtomicBool.

Examples

use std::sync::atomic::AtomicBool;
let atomic_bool = AtomicBool::from(true);
assert_eq!(format!("{:?}", atomic_bool), "true")Run

impl Default for AtomicBool[src]

fn default() -> AtomicBool[src]

Creates an AtomicBool initialized to false.

impl Debug for AtomicBool1.3.0[src]

impl Sync for AtomicBool[src]

impl RefUnwindSafe for AtomicBool1.14.0[src]

Auto Trait Implementations

impl Send for AtomicBool

Blanket Implementations

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]