std::adjacent_find
Defined in header <algorithm>
|
||
(1) | ||
template< class ForwardIt > ForwardIt adjacent_find( ForwardIt first, ForwardIt last ); |
(until C++20) | |
template< class ForwardIt > constexpr ForwardIt adjacent_find( ForwardIt first, ForwardIt last ); |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt > ForwardIt adjacent_find( ExecutionPolicy&& policy, |
(2) | (since C++17) |
(3) | ||
template< class ForwardIt, class BinaryPredicate> ForwardIt adjacent_find( ForwardIt first, ForwardIt last, BinaryPredicate p ); |
(until C++20) | |
template< class ForwardIt, class BinaryPredicate> constexpr ForwardIt adjacent_find( ForwardIt first, ForwardIt last, BinaryPredicate p ); |
(since C++20) | |
template< class ExecutionPolicy, class ForwardIt, class BinaryPredicate> ForwardIt adjacent_find( ExecutionPolicy&& policy, |
(4) | (since C++17) |
Searches the range [first, last)
for two consecutive identical elements.
operator==
.p
.policy
. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is trueParameters
first, last | - | the range of elements to examine |
policy | - | the execution policy to use. See execution policy for details. |
p | - | binary predicate which returns true if the elements should be treated as equal. The signature of the predicate function should be equivalent to the following: bool pred(const Type1 &a, const Type2 &b); While the signature does not need to have const &, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) |
Type requirements | ||
-ForwardIt must meet the requirements of LegacyForwardIterator.
|
Return value
an iterator to the first of the first pair of identical elements, that is, the first iterator it
such that *it == *(it+1) for the first version or p(*it, *(it + 1)) != false for the second version.
If no such elements are found, last
is returned
Complexity
min((result-first)+1, (last-first)-1)
applications of the predicate where result
is the return value.O(last-first)
applications of the corresponding predicate.Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the three standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
Possible implementation
First version |
---|
template<class ForwardIt> ForwardIt adjacent_find(ForwardIt first, ForwardIt last) { if (first == last) { return last; } ForwardIt next = first; ++next; for (; next != last; ++next, ++first) { if (*first == *next) { return first; } } return last; } |
Second version |
template<class ForwardIt, class BinaryPredicate> ForwardIt adjacent_find(ForwardIt first, ForwardIt last, BinaryPredicate p) { if (first == last) { return last; } ForwardIt next = first; ++next; for (; next != last; ++next, ++first) { if (p(*first, *next)) { return first; } } return last; } |
Example
#include <algorithm> #include <iostream> #include <vector> #include <functional> int main() { std::vector<int> v1{0, 1, 2, 3, 40, 40, 41, 41, 5}; auto i1 = std::adjacent_find(v1.begin(), v1.end()); if (i1 == v1.end()) { std::cout << "no matching adjacent elements\n"; } else { std::cout << "the first adjacent pair of equal elements at: " << std::distance(v1.begin(), i1) << '\n'; } auto i2 = std::adjacent_find(v1.begin(), v1.end(), std::greater<int>()); if (i2 == v1.end()) { std::cout << "The entire vector is sorted in ascending order\n"; } else { std::cout << "The last element in the non-decreasing subsequence is at: " << std::distance(v1.begin(), i2) << '\n'; } }
Output:
The first adjacent pair of equal elements at: 4 The last element in the non-decreasing subsequence is at: 7
See also
removes consecutive duplicate elements in a range (function template) |