26.1. typing
— 类型标注支持¶
3.5 新版功能.
源码: Lib/typing.py
注解
typing 模块以 暂定状态 包含在标准库中。如果核心开发人员认为有必要,可能会添加新功能,甚至可能会在次要版本之间改变 API。
此模块支持 PEP 484 和 PEP 526 指定的类型提示。最基本的支持由 Any
,Union
,Tuple
,Callable
,TypeVar
和 Generic
类型组成。有关完整的规范,请参阅 PEP 484。有关类型提示的简单介绍,请参阅 PEP 483。
函数接受并返回一个字符串,注释像下面这样:
def greeting(name: str) -> str:
return 'Hello ' + name
在函数 greeting
中,参数 name
预期是 str
类型,并且返回 str
类型。子类型允许作为参数。
26.1.1. 类型别名¶
类型别名通过将类型分配给别名来定义。在这个例子中, Vector
和 List[float]
将被视为可互换的同义词:
from typing import List
Vector = List[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
类型别名可用于简化复杂类型签名。例如:
from typing import Dict, Tuple, List
ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: List[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
...
请注意,None
作为类型提示是一种特殊情况,并且由 type(None)
取代。
26.1.2. NewType¶
使用 NewType()
辅助函数创建不同的类型:
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
静态类型检查器会将新类型视为它是原始类型的子类。这对于帮助捕捉逻辑错误非常有用:
def get_user_name(user_id: UserId) -> str:
...
# typechecks
user_a = get_user_name(UserId(42351))
# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)
您仍然可以对 UserId
类型的变量执行所有的 int
支持的操作,但结果将始终为 int
类型。这可以让你在需要 int
的地方传入 UserId
,但会阻止你以无效的方式无意中创建 UserId
:
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
请注意,这些检查仅通过静态类型检查程序强制执行。在运行时,Derived = NewType('Derived',Base)
将 Derived
一个函数,该函数立即返回您传递它的任何参数。这意味着表达式 Derived(some_value)
不会创建一个新的类或引入任何超出常规函数调用的开销。
更确切地说,表达式 some_value is Derived(some_value)
在运行时总是为真。
这也意味着无法创建 Derived
的子类型,因为它是运行时的标识函数,而不是实际的类型:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass
但是,可以基于’derived’ NewType
创建 NewType()
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
并且 ProUserId
的类型检查将按预期工作。
有关更多详细信息,请参阅 PEP 484。
注解
回想一下,使用类型别名声明两种类型彼此 等效 。Alias = Original
将使静态类型检查对待所有情况下 Alias
完全等同于 Original
。当您想简化复杂类型签名时,这很有用。
相反,NewType
声明一种类型是另一种类型的子类型。Derived = NewType('Derived', Original)
将使静态类型检查器将 Derived
当作 Original
的 子类 ,这意味着 Original
类型的值不能用于 Derived
类型的值需要的地方。当您想以最小的运行时间成本防止逻辑错误时,这非常有用。
3.5.2 新版功能.
26.1.3. Callable¶
期望特定签名的回调函数的框架可以将类型标注为 Callable[[Arg1Type, Arg2Type], ReturnType]
。
例如:
from typing import Callable
def feeder(get_next_item: Callable[[], str]) -> None:
# Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
# Body
通过用文字省略号替换类型提示中的参数列表: Callable[...,ReturnType]
,可以声明可调用的返回类型,而无需指定调用签名。
26.1.4. 泛型(Generic)¶
由于无法以通用方式静态推断有关保存在容器中的对象的类型信息,因此抽象基类已扩展为支持订阅以表示容器元素的预期类型。
from typing import Mapping, Sequence
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
泛型可以通过使用typing模块中名为 TypeVar
的新工厂进行参数化。
from typing import Sequence, TypeVar
T = TypeVar('T') # Declare type variable
def first(l: Sequence[T]) -> T: # Generic function
return l[0]
26.1.5. 用户定义的泛型类型¶
用户定义的类可以定义为泛型类。
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
Generic[T]
作为基类定义了类 LoggedVar
采用单个类型参数 T
。这也使得 T
作为类体内的一个类型有效。
Generic
基类使用定义了 __getitem__()
的元类,以便 LoggedVar[t]
作为类型有效:
from typing import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
泛型类型可以有任意数量的类型变量,并且类型变量可能会受到限制:
from typing import TypeVar, Generic
...
T = TypeVar('T')
S = TypeVar('S', int, str)
class StrangePair(Generic[T, S]):
...
Generic
每个参数的类型变量必须是不同的。这是无效的:
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
您可以对 Generic
使用多重继承:
from typing import TypeVar, Generic, Sized
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
从泛型类继承时,某些类型变量可能是固定的:
from typing import TypeVar, Mapping
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
在这种情况下,MyDict
只有一个参数,T
。
在不指定类型参数的情况下使用泛型类别会为每个位置假设 Any
。在下面的例子中,MyIterable
不是泛型,但是隐式继承自 Iterable[Any]
:
from typing import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
用户定义的通用类型别名也受支持。例子:
from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]
# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
return sum(x*y for x, y in v)
Generic
使用的元类是 abc.ABCMeta
的子类。泛型类可以通过包含抽象方法或属性成为ABC,并且泛型类也可以使用ABCs作为基类而不存在元类冲突。不支持泛型元类。参数化泛型的结果被缓存,并且typing模块中的大部分类型都是可散列的,并且可以比较是否相等。
26.1.6. Any
类型¶
Any
是一种特殊的类型。静态类型检查器将所有类型视为与 Any
兼容,反之亦然, Any
也与所有类型相兼容。
这意味着可对类型为 Any
的值执行任何操作或方法调用,并将其赋值给任何变量:
from typing import Any
a = None # type: Any
a = [] # OK
a = 2 # OK
s = '' # type: str
s = a # OK
def foo(item: Any) -> int:
# Typechecks; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
需要注意的是,将 Any
类型的值赋值给另一个更具体的类型时,Python不会执行类型检查。例如,当把 a
赋值给 s
时,即使 s
被声明为 str
类型,在运行时接收到的是 int
值,静态类型检查器也不会报错。
此外,所有返回值无类型或形参无类型的函数将隐式地默认使用 Any
类型:
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
当需要混用动态类型和静态类型的代码时,上述行为可以让 Any
被用作 应急出口 。
Any
和 object
的行为对比。与 Any
相似,所有的类型都是 object
的子类型。然而不同于 Any
,反之并不成立: object
不是 其他所有类型的子类型。
这意味着当一个值的类型是 object
的时候,类型检查器会拒绝对它的几乎所有的操作。把它赋值给一个指定了类型的变量(或者当作返回值)是一个类型错误。比如说:
def hash_a(item: object) -> int:
# Fails; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Typechecks
item.magic()
...
# Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")
26.1.7. 类,函数和修饰器.¶
这个模块定义了如下的类,模块和修饰器.
-
class
typing.
TypeVar
¶ 类型变量
用法:
T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows:
def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def longest(x: A, y: A) -> A: """Return the longest of two strings.""" return x if len(x) >= len(y) else y
The latter example’s signature is essentially the overloading of
(str, str) -> str
and(bytes, bytes) -> bytes
. Also note that if the arguments are instances of some subclass ofstr
, the return type is still plainstr
.isinstance(x, T)
会在运行时抛出TypeError
异常。一般地说,isinstance()
和issubclass()
不应该和类型一起使用。Type variables may be marked covariant or contravariant by passing
covariant=True
orcontravariant=True
. See PEP 484 for more details. By default type variables are invariant. Alternatively, a type variable may specify an upper bound usingbound=<type>
. This means that an actual type substituted (explicitly or implicitly) for the type variable must be a subclass of the boundary type, see PEP 484.
-
class
typing.
Generic
¶ Abstract base class for generic types.
A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
这个类之后可以被这样用:
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
-
class
typing.
Type
(Generic[CT_co])¶ A variable annotated with
C
may accept a value of typeC
. In contrast, a variable annotated withType[C]
may accept values that are classes themselves – specifically, it will accept the class object ofC
. For example:a = 3 # Has type 'int' b = int # Has type 'Type[int]' c = type(a) # Also has type 'Type[int]'
Note that
Type[C]
is covariant:class User: ... class BasicUser(User): ... class ProUser(User): ... class TeamUser(User): ... # Accepts User, BasicUser, ProUser, TeamUser, ... def make_new_user(user_class: Type[User]) -> User: # ... return user_class()
The fact that
Type[C]
is covariant implies that all subclasses ofC
should implement the same constructor signature and class method signatures asC
. The type checker should flag violations of this, but should also allow constructor calls in subclasses that match the constructor calls in the indicated base class. How the type checker is required to handle this particular case may change in future revisions of PEP 484.The only legal parameters for
Type
are classes,Any
, type variables, and unions of any of these types. For example:def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...
Type[Any]
is equivalent toType
which in turn is equivalent totype
, which is the root of Python’s metaclass hierarchy.3.5.2 新版功能.
-
class
typing.
Iterable
(Generic[T_co])¶ collections.abc.Iterable
的泛型版本。
-
class
typing.
Iterator
(Iterable[T_co])¶ collections.abc.Iterator
的泛型版本。
-
class
typing.
Reversible
(Iterable[T_co])¶ collections.abc.Reversible
的泛型版本。
-
class
typing.
SupportsInt
¶ An ABC with one abstract method
__int__
.
-
class
typing.
SupportsFloat
¶ An ABC with one abstract method
__float__
.
-
class
typing.
SupportsComplex
¶ An ABC with one abstract method
__complex__
.
-
class
typing.
SupportsBytes
¶ An ABC with one abstract method
__bytes__
.
-
class
typing.
SupportsAbs
¶ An ABC with one abstract method
__abs__
that is covariant in its return type.
-
class
typing.
SupportsRound
¶ An ABC with one abstract method
__round__
that is covariant in its return type.
-
class
typing.
Container
(Generic[T_co])¶ collections.abc.Container
的泛型版本。
-
class
typing.
Hashable
¶
-
class
typing.
Sized
¶
-
class
typing.
Collection
(Sized, Iterable[T_co], Container[T_co])¶ collections.abc.Collection
的泛型版本。3.6 新版功能.
-
class
typing.
AbstractSet
(Sized, Collection[T_co])¶ collections.abc.Set
的泛型版本。
-
class
typing.
MutableSet
(AbstractSet[T])¶ collections.abc.MutableSet
的泛型版本。
-
class
typing.
Mapping
(Sized, Collection[KT], Generic[VT_co])¶ A generic version of
collections.abc.Mapping
.
-
class
typing.
MutableMapping
(Mapping[KT, VT])¶
-
class
typing.
Sequence
(Reversible[T_co], Collection[T_co])¶ collections.abc.Sequence
的泛型版本。
-
class
typing.
MutableSequence
(Sequence[T])¶
-
class
typing.
ByteString
(Sequence[int])¶ collections.abc.ByteString
的泛型版本。This type represents the types
bytes
,bytearray
, andmemoryview
.As a shorthand for this type,
bytes
can be used to annotate arguments of any of the types mentioned above.
-
class
typing.
Deque
(deque, MutableSequence[T])¶ collections.deque
的泛型版本。3.6.1 新版功能.
-
class
typing.
List
(list, MutableSequence[T])¶ Generic version of
list
. Useful for annotating return types. To annotate arguments it is preferred to use abstract collection types such asMapping
,Sequence
, orAbstractSet
.这个类型可以这样用:
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0]
-
class
typing.
Set
(set, MutableSet[T])¶ A generic version of
builtins.set
.
-
class
typing.
FrozenSet
(frozenset, AbstractSet[T_co])¶ A generic version of
builtins.frozenset
.
-
class
typing.
MappingView
(Sized, Iterable[T_co])¶ collections.abc.MappingView
的泛型版本。
-
class
typing.
KeysView
(MappingView[KT_co], AbstractSet[KT_co])¶ collections.abc.KeysView
的泛型版本。
-
class
typing.
ItemsView
(MappingView, Generic[KT_co, VT_co])¶ collections.abc.ItemsView
的泛型版本。
-
class
typing.
ValuesView
(MappingView[VT_co])¶ collections.abc.ValuesView
的泛型版本。
-
class
typing.
Awaitable
(Generic[T_co])¶ collections.abc.Awaitable
的泛型版本。
-
class
typing.
Coroutine
(Awaitable[V_co], Generic[T_co T_contra, V_co])¶ A generic version of
collections.abc.Coroutine
. The variance and order of type variables correspond to those ofGenerator
, for example:from typing import List, Coroutine c = None # type: Coroutine[List[str], str, int] ... x = c.send('hi') # type: List[str] async def bar() -> None: x = await c # type: int
-
class
typing.
AsyncIterable
(Generic[T_co])¶
-
class
typing.
AsyncIterator
(AsyncIterable[T_co])¶
-
class
typing.
ContextManager
(Generic[T_co])¶ contextlib.AbstractContextManager
的泛型版本。3.6 新版功能.
-
class
typing.
AsyncContextManager
(Generic[T_co])¶ An ABC with async abstract
__aenter__()
and__aexit__()
methods.3.6 新版功能.
-
class
typing.
Dict
(dict, MutableMapping[KT, VT])¶ A generic version of
dict
. The usage of this type is as follows:def get_position_in_index(word_list: Dict[str, int], word: str) -> int: return word_list[word]
-
class
typing.
DefaultDict
(collections.defaultdict, MutableMapping[KT, VT])¶ collections.defaultdict
的泛型版本。3.5.2 新版功能.
-
class
typing.
Counter
(collections.Counter, Dict[T, int])¶ collections.Counter
的泛型版本。3.6.1 新版功能.
-
class
typing.
ChainMap
(collections.ChainMap, MutableMapping[KT, VT])¶ collections.ChainMap
的泛型版本。3.6.1 新版功能.
-
class
typing.
Generator
(Iterator[T_co], Generic[T_co, T_contra, V_co])¶ A generator can be annotated by the generic type
Generator[YieldType, SendType, ReturnType]
. For example:def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done'
Note that unlike many other generics in the typing module, the
SendType
ofGenerator
behaves contravariantly, not covariantly or invariantly.If your generator will only yield values, set the
SendType
andReturnType
toNone
:def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1
Alternatively, annotate your generator as having a return type of either
Iterable[YieldType]
orIterator[YieldType]
:def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1
-
class
typing.
AsyncGenerator
(AsyncIterator[T_co], Generic[T_co, T_contra])¶ An async generator can be annotated by the generic type
AsyncGenerator[YieldType, SendType]
. For example:async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded
Unlike normal generators, async generators cannot return a value, so there is no
ReturnType
type parameter. As withGenerator
, theSendType
behaves contravariantly.If your generator will only yield values, set the
SendType
toNone
:async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start)
Alternatively, annotate your generator as having a return type of either
AsyncIterable[YieldType]
orAsyncIterator[YieldType]
:async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start)
3.5.4 新版功能.
-
class
typing.
Text
¶ Text
is an alias forstr
. It is provided to supply a forward compatible path for Python 2 code: in Python 2,Text
is an alias forunicode
.Use
Text
to indicate that a value must contain a unicode string in a manner that is compatible with both Python 2 and Python 3:def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
3.5.2 新版功能.
-
class
typing.
IO
¶ -
class
typing.
TextIO
¶ -
class
typing.
BinaryIO
¶ Generic type
IO[AnyStr]
and its subclassesTextIO(IO[str])
andBinaryIO(IO[bytes])
represent the types of I/O streams such as returned byopen()
.
-
class
typing.
Pattern
¶ -
class
typing.
Match
¶ These type aliases correspond to the return types from
re.compile()
andre.match()
. These types (and the corresponding functions) are generic inAnyStr
and can be made specific by writingPattern[str]
,Pattern[bytes]
,Match[str]
, orMatch[bytes]
.
-
class
typing.
NamedTuple
¶ Typed version of namedtuple.
用法:
class Employee(NamedTuple): name: str id: int
This is equivalent to:
Employee = collections.namedtuple('Employee', ['name', 'id'])
To give a field a default value, you can assign to it in the class body:
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
Fields with a default value must come after any fields without a default.
The resulting class has two extra attributes:
_field_types
, giving a dict mapping field names to types, and_field_defaults
, a dict mapping field names to default values. (The field names are in the_fields
attribute, which is part of the namedtuple API.)NamedTuple
subclasses can also have docstrings and methods:class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
Backward-compatible usage:
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
在 3.6 版更改: Added support for PEP 526 variable annotation syntax.
在 3.6.1 版更改: Added support for default values, methods, and docstrings.
-
typing.
NewType
(typ)¶ A helper function to indicate a distinct types to a typechecker, see NewType. At runtime it returns a function that returns its argument. Usage:
UserId = NewType('UserId', int) first_user = UserId(1)
3.5.2 新版功能.
-
typing.
cast
(typ, val)¶ Cast a value to a type.
This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don’t check anything (we want this to be as fast as possible).
-
typing.
get_type_hints
(obj[, globals[, locals]])¶ 返回一个字典,字典内含有函数、方法、模块或类对象的类型提示。
This is often the same as
obj.__annotations__
. In addition, forward references encoded as string literals are handled by evaluating them inglobals
andlocals
namespaces. If necessary,Optional[t]
is added for function and method annotations if a default value equal toNone
is set. For a classC
, return a dictionary constructed by merging all the__annotations__
alongC.__mro__
in reverse order.
-
@
typing.
overload
¶ The
@overload
decorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload
-decorated definitions must be followed by exactly one non-@overload
-decorated definition (for the same function/method). The@overload
-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload
-decorated definition, while the latter is used at runtime but should be ignored by a type checker. At runtime, calling a@overload
-decorated function directly will raiseNotImplementedError
. An example of overload that gives a more precise type than can be expressed using a union or a type variable:@overload def process(response: None) -> None: ... @overload def process(response: int) -> Tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): <actual implementation>
See PEP 484 for details and comparison with other typing semantics.
-
@
typing.
no_type_check
¶ 用于指明标注不是类型提示的装饰器。
此 decorator 装饰器生效于类或函数上。如果作用于类上的话,它会递归地作用于这个类的所定义的所有方法上(但是对于超类或子类所定义的方法不会生效)。
此方法会就地地修改函数。
-
@
typing.
no_type_check_decorator
¶ 使其它装饰器起到
no_type_check()
效果的装饰器。This wraps the decorator with something that wraps the decorated function in
no_type_check()
.
-
typing.
NoReturn
¶ 标记一个函数没有返回值的特殊类型。比如说:
from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way')
3.6.5 新版功能.
-
typing.
Union
¶ 联合类型;
Union[X, Y]
意味着:要不是 X,要不是 Y。使用形如
Union[int, str]
的形式来定义一个联合类型。细节如下:参数必须是类型,而且必须至少有一个参数。
联合类型的联合类型会被展开打平,比如:
Union[Union[int, str], float] == Union[int, str, float]
仅有一个参数的联合类型会坍缩成参数自身,比如:
Union[int] == int # The constructor actually returns int
多余的参数会被跳过,比如:
Union[int, str, int] == Union[int, str]
在比较联合类型的时候,参数顺序会被忽略,比如:
Union[int, str] == Union[str, int]
When a class and its subclass are present, the latter is skipped, e.g.:
Union[int, object] == object
你不能继承或者实例化一个联合类型。
你不能写成
Union[X][Y]
。你可以使用
Optional[X]
作为Union[X, None]
的缩写。
-
typing.
Optional
¶ Optional type.
Optional[X]
is equivalent toUnion[X, None]
.Note that this is not the same concept as an optional argument, which is one that has a default. An optional argument with a default does not require the
Optional
qualifier on its type annotation just because it is optional. For example:def foo(arg: int = 0) -> None: ...
On the other hand, if an explicit value of
None
is allowed, the use ofOptional
is appropriate, whether the argument is optional or not. For example:def foo(arg: Optional[int] = None) -> None: ...
-
typing.
Tuple
¶ Tuple type;
Tuple[X, Y]
is the type of a tuple of two items with the first item of type X and the second of type Y.Example:
Tuple[T1, T2]
is a tuple of two elements corresponding to type variables T1 and T2.Tuple[int, float, str]
is a tuple of an int, a float and a string.To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g.
Tuple[int, ...]
. A plainTuple
is equivalent toTuple[Any, ...]
, and in turn totuple
.
-
typing.
Callable
¶ Callable type;
Callable[[int], str]
is a function of (int) -> str.The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types or an ellipsis; the return type must be a single type.
There is no syntax to indicate optional or keyword arguments; such function types are rarely used as callback types.
Callable[..., ReturnType]
(literal ellipsis) can be used to type hint a callable taking any number of arguments and returningReturnType
. A plainCallable
is equivalent toCallable[..., Any]
, and in turn tocollections.abc.Callable
.
-
typing.
ClassVar
¶ Special type construct to mark class variables.
As introduced in PEP 526, a variable annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable and should not be set on instances of that class. Usage:
class Starship: stats: ClassVar[Dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVar
accepts only types and cannot be further subscribed.ClassVar
is not a class itself, and should not be used withisinstance()
orissubclass()
.ClassVar
does not change Python runtime behavior, but it can be used by third-party type checkers. For example, a type checker might flag the following code as an error:enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
3.5.3 新版功能.
-
typing.
AnyStr
¶ AnyStr
is a type variable defined asAnyStr = TypeVar('AnyStr', str, bytes)
.It is meant to be used for functions that may accept any kind of string without allowing different kinds of strings to mix. For example:
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat(u"foo", u"bar") # Ok, output has type 'unicode' concat(b"foo", b"bar") # Ok, output has type 'bytes' concat(u"foo", b"bar") # Error, cannot mix unicode and bytes
-
typing.
TYPE_CHECKING
¶ A special constant that is assumed to be
True
by 3rd party static type checkers. It isFalse
at runtime. Usage:if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
Note that the first type annotation must be enclosed in quotes, making it a “forward reference”, to hide the
expensive_mod
reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.3.5.2 新版功能.