frozen_string_literal: false BigDecimal extends the native Integer class to provide the to_d method.
When you require the BigDecimal library in your application, this methodwill be available on Integer objects.
Add double dispatch to Integer
This class is the basis for the two concrete classes that hold whole numbers, Bignum and Fixnum.
- C
- D
- E
- F
- G
- I
- L
- N
- O
- P
- R
- S
- T
- U
Iterates the given block over all prime numbers.
See Prime#each for more details.
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division for more details.
As int is already an Integer, all
these methods simply return the receiver.
Source: show
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns a string containing the character represented by the
int's value according to encoding.
65.chr #=> "A"
230.chr #=> "\346"
255.chr(Encoding::UTF_8) #=> "\303\277"
Source: show
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%d out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_check_arity(argc, 0, 1);
break;
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
Returns 1.
Source: show
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
int.downto(limit) → an_enumerator Link
Iterates the given block, passing decreasing values from int
down to and including limit.
If no block is given, an Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " }
print " Liftoff!\n"
#=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
Source: show
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
Returns true if int is an even number.
Source: show
static VALUE
int_even_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
As int is already an Integer, all
these methods simply return the receiver.
Source: show
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
2.gcd(2) #=> 2
3.gcd(-7) #=> 1
((1<<31)-1).gcd((1<<61)-1) #=> 1
Source: show
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
Returns an array; [int.gcd(int2), int.lcm(int2)].
2.gcdlcm(2) #=> [2, 2]
3.gcdlcm(-7) #=> [1, 21]
((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
Source: show
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Since int is already an Integer,
this always returns true.
Source: show
static VALUE
int_int_p(VALUE num)
{
return Qtrue;
}
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
2.lcm(2) #=> 2
3.lcm(-7) #=> 21
((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
Source: show
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
Source: show
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_plus(num, INT2FIX(1));
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
Returns self.
Source: show
static VALUE
integer_numerator(VALUE self)
{
return self;
}
Returns true if int is an odd number.
Source: show
static VALUE
int_odd_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
Returns the int itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9.
For example, ?a.ord returns 97 both in 1.8 and 1.9.
Source: show
static VALUE
int_ord(VALUE num)
{
return num;
}
Returns the Integer equal to int -
1.
1.pred #=> 0
(-1).pred #=> -2
Source: show
VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_minus(num, INT2FIX(1));
}
return rb_funcall(num, '-', 1, INT2FIX(1));
}
Returns true if self is a prime number, else returns false.
Returns the factorization of self.
See Prime#prime_division for more details.
Returns the value as a rational. The optional argument eps is always ignored.
Source: show
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_scan_args(argc, argv, "01", NULL);
return integer_to_r(self);
}
Rounds int to a given precision in decimal digits (default 0
digits).
Precision may be negative. Returns a floating point number when
ndigits is positive, self for zero, and round
down for negative.
1.round #=> 1
1.round(2) #=> 1.0
15.round(-1) #=> 20
Source: show
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
VALUE n;
int ndigits;
if (argc == 0) return num;
rb_scan_args(argc, argv, "1", &n);
ndigits = NUM2INT(n);
if (ndigits > 0) {
return rb_Float(num);
}
if (ndigits == 0) {
return num;
}
return int_round_0(num, ndigits);
}
Source: show
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
if (RB_TYPE_P(num, T_BIGNUM)) {
return rb_big_plus(num, INT2FIX(1));
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
int.times → an_enumerator Link
Iterates the given block int times, passing in values from
zero to int - 1.
If no block is given, an Enumerator is returned instead.
5.times do |i|
print i, " "
end
#=> 0 1 2 3 4
Source: show
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield_1(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(rb_funcall(i, '<', 1, num))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
}
return num;
}
Casts an Integer as an OpenSSL::BN
See `man bn` for more info.
Convert int to a BigDecimal and
return it.
require 'bigdecimal'
require 'bigdecimal/util'
42.to_d
# => #<BigDecimal:1008ef070,'0.42E2',9(36)>
As int is already an Integer, all
these methods simply return the receiver.
Source: show
static VALUE
int_to_i(VALUE num)
{
return num;
}
As int is already an Integer, all
these methods simply return the receiver.
Source: show
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns the value as a rational.
1.to_r #=> (1/1)
(1<<64).to_r #=> (18446744073709551616/1)
Source: show
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
As int is already an Integer, all
these methods simply return the receiver.
Source: show
static VALUE
int_to_i(VALUE num)
{
return num;
}
int.upto(limit) → an_enumerator Link
Iterates the given block, passing in integer values from int
up to and including limit.
If no block is given, an Enumerator is returned instead.
For example:
5.upto(10) { |i| print i, " " }
#=> 5 6 7 8 9 10
Source: show
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}