frozen_string_literal: false
Trigonometric and transcendental functions for complex numbers.
CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.
Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren't interested in complex numbers, and perhaps don't even know what they are. They would rather have Math.sqrt raise an exception than return a complex number.
For more information you can see Complex class.
Usage
To start using this library, simply require cmath library:
require "cmath"
- A
- C
- E
- L
- S
- T
| RealMath | = | Math # :nodoc: |
Backup of Math is needed because mathn.rb replaces Math with CMath. |
||
Returns the arc cosine of z
CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
returns the inverse hyperbolic cosine of z
CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
Returns the arc sine of z
CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
returns the inverse hyperbolic sine of z
CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
Returns the arc tangent of z
CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
returns the arc tangent of y divided by x using
the signs of y and x to determine the quadrant
CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
returns the inverse hyperbolic tangent of z
CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
Returns the principal value of the cube root of z
CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
Returns the cosine of z, where z is given in
radians
CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
Returns the hyperbolic cosine of z, where z is
given in radians
CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
Math::E raised to the z power
CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.
CMath.log(1 + 4i) #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
Returns the base 10 logarithm of z
CMath.log10(-1) #=> (0.0+1.3643763538418412i)
Returns the base 2 logarithm of z
CMath.log2(-1) => (0.0+4.532360141827194i)
Returns the sine of z, where z is given in
radians
CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
Returns the hyperbolic sine of z, where z is
given in radians
CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
Returns the non-negative square root of Complex.
CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
# File lib/cmath.rb, line 130 def sqrt(z) begin if z.real? if z < 0 Complex(0, RealMath.sqrt(-z)) else RealMath.sqrt(z) end else if z.imag < 0 || (z.imag == 0 && z.imag.to_s[0] == '-') sqrt(z.conjugate).conjugate else r = z.abs x = z.real Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0)) end end rescue NoMethodError handle_no_method_error end end
Returns the tangent of z, where z is given in
radians
CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
Returns the hyperbolic tangent of z, where z is
given in radians
CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)