BigDecimal extends the native Rational class to provide the to_d method.
When you require BigDecimal in your application, this method will be available on Rational objects.
When mathn is required Rational is changed to simplify the use of Rational operations.
Normal behaviour:
Rational.new!(1,3) ** 2 # => Rational(1, 9)
(1 / 3) ** 2 # => 0
require 'mathn' behaviour:
(1 / 3) ** 2 # => 1/9
A rational number can be represented as a paired integer number; a/b (b>0). Where a is numerator and b is denominator. Integer a equals rational a/1 mathematically.
In ruby, you can create rational object with Rational, #to_r or rationalize method. The return values will be irreducible.
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3)
3.to_r #=> (3/1)
You can also create rational object from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write program without any rounding errors.
10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
However, when an expression has inexact factor (numerical value or operation), will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
- CLASS Rational::compatible
- #
- A
- C
- D
- F
- I
- J
- N
- Q
- R
- T
Source: show
# File ext/json/lib/json/add/rational.rb, line 7 def self.json_create(object) Rational(object['n'], object['d']) end
Performs multiplication.
Rational(2, 3) * Rational(2, 3) #=> (4/9)
Rational(900) * Rational(1) #=> (900/1)
Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
Rational(9, 8) * 4 #=> (9/2)
Rational(20, 9) * 9.8 #=> 21.77777777777778
Source: show
static VALUE
nurat_mul(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_mul(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
}
else {
return rb_num_coerce_bin(self, other, '*');
}
}
Exponentiate by other
(1/3) ** 2 # => 1/9
Source: show
# File lib/mathn.rb, line 138 def ** (other) if other.kind_of?(Rational) other2 = other if self < 0 return Complex(self, 0.0) ** other elsif other == 0 return Rational(1,1) elsif self == 0 return Rational(0,1) elsif self == 1 return Rational(1,1) end npd = numerator.prime_division dpd = denominator.prime_division if other < 0 other = -other npd, dpd = dpd, npd end for elm in npd elm[1] = elm[1] * other if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 return Float(self) ** other2 end elm[1] = elm[1].to_i end for elm in dpd elm[1] = elm[1] * other if !elm[1].kind_of?(Integer) and elm[1].denominator != 1 return Float(self) ** other2 end elm[1] = elm[1].to_i end num = Integer.from_prime_division(npd) den = Integer.from_prime_division(dpd) Rational(num,den) elsif other.kind_of?(Integer) if other > 0 num = numerator ** other den = denominator ** other elsif other < 0 num = denominator ** -other den = numerator ** -other elsif other == 0 num = 1 den = 1 end Rational(num, den) elsif other.kind_of?(Float) Float(self) ** other else x , y = other.coerce(self) x ** y end end
Performs addition.
Rational(2, 3) + Rational(2, 3) #=> (4/3)
Rational(900) + Rational(1) #=> (900/1)
Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
Rational(9, 8) + 4 #=> (41/8)
Rational(20, 9) + 9.8 #=> 12.022222222222222
Source: show
static VALUE
nurat_add(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '+');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_add(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
}
else {
return rb_num_coerce_bin(self, other, '+');
}
}
Performs subtraction.
Rational(2, 3) - Rational(2, 3) #=> (0/1)
Rational(900) - Rational(1) #=> (899/1)
Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
Rational(9, 8) - 4 #=> (23/8)
Rational(20, 9) - 9.8 #=> -7.577777777777778
Source: show
static VALUE
nurat_sub(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '-');
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_sub(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
}
else {
return rb_num_coerce_bin(self, other, '-');
}
}
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
Source: show
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_TYPE_P(other, T_FLOAT))
return rb_funcall(f_to_f(self), '/', 1, other);
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
Performs comparison and returns -1, 0, or +1.
nil is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2,3) <=> Rational(1,3) #=> 1
Rational(1,3) <=> 1 #=> -1
Rational(1,3) <=> 0.3 #=> 1
Source: show
static VALUE
nurat_cmp(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
return f_cmp(dat->num, other); /* c14n */
return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_cmp(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
VALUE num1, num2;
get_dat2(self, other);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
}
else {
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
}
return f_cmp(f_sub(num1, num2), ZERO);
}
}
else {
return rb_num_coerce_cmp(self, other, id_cmp);
}
}
Returns true if rat equals object numerically.
Rational(2, 3) == Rational(2, 3) #=> true
Rational(5) == 5 #=> true
Rational(0) == 0.0 #=> true
Rational('1/3') == 0.33 #=> false
Rational('1/2') == '1/2' #=> false
Source: show
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
{
get_dat1(self);
if (f_zero_p(dat->num) && f_zero_p(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
if (f_eqeq_p(dat->num, other))
return Qtrue;
return Qfalse;
}
}
else if (RB_TYPE_P(other, T_FLOAT)) {
return f_eqeq_p(f_to_f(self), other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
if (f_zero_p(adat->num) && f_zero_p(bdat->num))
return Qtrue;
return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
f_eqeq_p(adat->den, bdat->den));
}
}
else {
return f_eqeq_p(other, self);
}
}
Source: show
# File ext/json/lib/json/add/rational.rb, line 11 def as_json(*) { JSON.create_id => self.class.name, 'n' => numerator, 'd' => denominator, } end
rat.ceil(precision=0) → rational Link
Returns the truncated value (toward positive infinity).
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
'%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
Source: show
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil);
}
Returns the denominator (always positive).
Rational(7).denominator #=> 1
Rational(7, 1).denominator #=> 1
Rational(9, -4).denominator #=> 4
Rational(-2, -10).denominator #=> 5
rat.numerator.gcd(rat.denominator) #=> 1
Source: show
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self);
return dat->den;
}
Performs division and returns the value as a float.
Rational(2, 3).fdiv(1) #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
Rational(2).fdiv(3) #=> 0.6666666666666666
Source: show
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
if (f_zero_p(other))
return f_div(self, f_to_f(other));
return f_to_f(f_div(self, other));
}
rat.floor(precision=0) → rational Link
Returns the truncated value (toward negative infinity).
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
'%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
Source: show
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor);
}
Returns the value as a string for inspection.
Rational(2).inspect #=> "(2/1)"
Rational(-8, 6).inspect #=> "(-4/3)"
Rational('1/2').inspect #=> "(1/2)"
Source: show
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, f_inspect));
rb_str_cat2(s, ")");
return s;
}
Returns the numerator.
Rational(7).numerator #=> 7
Rational(7, 1).numerator #=> 7
Rational(9, -4).numerator #=> -9
Rational(-2, -10).numerator #=> 1
Source: show
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self);
return dat->num;
}
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
Source: show
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_TYPE_P(other, T_FLOAT))
return rb_funcall(f_to_f(self), '/', 1, other);
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_raise_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
rat.rationalize(eps) → rational Link
Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
r = Rational(5033165, 16777216)
r.rationalize #=> (5033165/16777216)
r.rationalize(Rational('0.01')) #=> (3/10)
r.rationalize(Rational('0.1')) #=> (1/3)
Source: show
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (argc == 0)
return self;
if (f_negative_p(self))
return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
rb_scan_args(argc, argv, "01", &e);
e = f_abs(e);
a = f_sub(self, e);
b = f_add(self, e);
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q);
return f_rational_new2(CLASS_OF(self), p, q);
}
rat.round(precision=0) → rational Link
Returns the truncated value (toward the nearest integer; 0.5 => 1; -0.5 => -1).
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').round(+1) #=> "-123.500000"
'%f' % Rational('-123.456').round(-1) #=> "-120.000000"
Source: show
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_round);
}
Converts a Rational to a BigDecimal.
The required precision parameter is used to determine the
amount of significant digits for the result. See BigDecimal#div for more
information, as it is used along with the denominator and the
precision for parameters.
r = (22/7.0).to_r
# => (7077085128725065/2251799813685248)
r.to_d(3)
# => #<BigDecimal:1a44d08,'0.314E1',18(36)>
Source: show
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 120 def to_d(precision) if precision <= 0 raise ArgumentError, "negative precision" end num = self.numerator BigDecimal(num).div(self.denominator, precision) end
Return the value as a float.
Rational(2).to_f #=> 2.0
Rational(9, 4).to_f #=> 2.25
Rational(-3, 4).to_f #=> -0.75
Rational(20, 3).to_f #=> 6.666666666666667
Source: show
static VALUE
nurat_to_f(VALUE self)
{
get_dat1(self);
return f_fdiv(dat->num, dat->den);
}
Returns the truncated value as an integer.
Equivalent to
rat.truncate.
Rational(2, 3).to_i #=> 0
Rational(3).to_i #=> 3
Rational(300.6).to_i #=> 300
Rational(98,71).to_i #=> 1
Rational(-30,2).to_i #=> -15
Source: show
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self);
if (f_negative_p(dat->num))
return f_negate(f_idiv(f_negate(dat->num), dat->den));
return f_idiv(dat->num, dat->den);
}
Source: show
# File ext/json/lib/json/add/rational.rb, line 19 def to_json(*) as_json.to_json end
Returns self.
Rational(2).to_r #=> (2/1)
Rational(-8, 6).to_r #=> (-4/3)
Source: show
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
Returns the value as a string.
Rational(2).to_s #=> "2/1"
Rational(-8, 6).to_s #=> "-4/3"
Rational('1/2').to_s #=> "1/2"
Source: show
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s);
}
rat.truncate(precision=0) → rational Link
Returns the truncated value (toward zero).
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
decimal - 1 2 3 . 4 5 6
^ ^ ^ ^ ^ ^
precision -3 -2 -1 0 +1 +2
'%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
'%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
Source: show
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate);
}