11.1. pickle
—— Python 对象序列化¶
The pickle
module implements a fundamental, but powerful algorithm for
serializing and de-serializing a Python object structure. “Pickling” is the
process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back
into an object hierarchy. Pickling (and unpickling) is alternatively known as
“serialization”, “marshalling,” [1] or “flattening”, however, to avoid
confusion, the terms used here are “pickling” and “unpickling”.
This documentation describes both the pickle
module and the
cPickle
module.
警告
pickle
模块在接受被错误地构造或者被恶意地构造的数据时不安全。永远不要 unpickle 来自于不受信任的或者未经验证的来源的数据。
11.1.1. 与其他 Python 模块间的关系¶
The pickle
module has an optimized cousin called the cPickle
module. As its name implies, cPickle
is written in C, so it can be up to
1000 times faster than pickle
. However it does not support subclassing
of the Pickler()
and Unpickler()
classes, because in cPickle
these are functions, not classes. Most applications have no need for this
functionality, and can benefit from the improved performance of cPickle
.
Other than that, the interfaces of the two modules are nearly identical; the
common interface is described in this manual and differences are pointed out
where necessary. In the following discussions, we use the term “pickle” to
collectively describe the pickle
and cPickle
modules.
The data streams the two modules produce are guaranteed to be interchangeable.
Python 有一个更原始的序列化模块称为 marshal
,但一般地 pickle
应该是序列化 Python 对象时的首选。marshal
存在主要是为了支持 Python 的 .pyc
文件.
pickle
模块与 marshal
在如下几方面显著地不同:
pickle
模块会跟踪已被序列化的对象,所以该对象之后再次被引用时不会再次被序列化。marshal
不会这么做。这隐含了递归对象和共享对象。递归对象指包含对自己的引用的对象。这种对象并不会被 marshal 接受,并且实际上尝试 marshal 递归对象会让你的 Python 解释器崩溃。对象共享发生在对象层级中存在多处引用同一对象时。
pickle
只会存储这些对象一次,并确保其他的引用指向同一个主副本。共享对象将保持共享,这可能对可变对象非常重要。marshal
不能被用于序列化用户定义类及其实例。pickle
能够透明地存储并保存类实例,然而此时类定义必须能够从与被存储时相同的模块被引入。The
marshal
serialization format is not guaranteed to be portable across Python versions. Because its primary job in life is to support.pyc
files, the Python implementers reserve the right to change the serialization format in non-backwards compatible ways should the need arise. Thepickle
serialization format is guaranteed to be backwards compatible across Python releases.
Note that serialization is a more primitive notion than persistence; although
pickle
reads and writes file objects, it does not handle the issue of
naming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. The pickle
module can transform a complex
object into a byte stream and it can transform the byte stream into an object
with the same internal structure. Perhaps the most obvious thing to do with
these byte streams is to write them onto a file, but it is also conceivable to
send them across a network or store them in a database. The module
shelve
provides a simple interface to pickle and unpickle objects on
DBM-style database files.
11.1.2. Data stream format¶
The data format used by pickle
is Python-specific. This has the
advantage that there are no restrictions imposed by external standards such as
XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.
By default, the pickle
data format uses a printable ASCII representation.
This is slightly more voluminous than a binary representation. The big
advantage of using printable ASCII (and of some other characteristics of
pickle
’s representation) is that for debugging or recovery purposes it is
possible for a human to read the pickled file with a standard text editor.
There are currently 3 different protocols which can be used for pickling.
- Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
- Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.
- Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.
Refer to PEP 307 for more information.
If a protocol is not specified, protocol 0 is used. If protocol is specified
as a negative value or HIGHEST_PROTOCOL
, the highest protocol version
available will be used.
在 2.3 版更改: Introduced the protocol parameter.
A binary format, which is slightly more efficient, can be chosen by specifying a protocol version >= 1.
11.1.3. Usage¶
To serialize an object hierarchy, you first create a pickler, then you call the
pickler’s dump()
method. To de-serialize a data stream, you first create
an unpickler, then you call the unpickler’s load()
method. The
pickle
module provides the following constant:
-
pickle.
HIGHEST_PROTOCOL
¶ The highest protocol version available. This value can be passed as a protocol value.
2.3 新版功能.
注解
Be sure to always open pickle files created with protocols >= 1 in binary mode. For the old ASCII-based pickle protocol 0 you can use either text mode or binary mode as long as you stay consistent.
A pickle file written with protocol 0 in binary mode will contain lone linefeeds as line terminators and therefore will look “funny” when viewed in Notepad or other editors which do not support this format.
The pickle
module provides the following functions to make the pickling
process more convenient:
-
pickle.
dump
(obj, file[, protocol])¶ Write a pickled representation of obj to the open file object file. This is equivalent to
Pickler(file, protocol).dump(obj)
.If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL
, the highest protocol version will be used.在 2.3 版更改: Introduced the protocol parameter.
file must have a
write()
method that accepts a single string argument. It can thus be a file object opened for writing, aStringIO
object, or any other custom object that meets this interface.
-
pickle.
load
(file)¶ Read a string from the open file object file and interpret it as a pickle data stream, reconstructing and returning the original object hierarchy. This is equivalent to
Unpickler(file).load()
.file must have two methods, a
read()
method that takes an integer argument, and areadline()
method that requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, aStringIO
object, or any other custom object that meets this interface.This function automatically determines whether the data stream was written in binary mode or not.
-
pickle.
dumps
(obj[, protocol])¶ Return the pickled representation of the object as a string, instead of writing it to a file.
If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL
, the highest protocol version will be used.在 2.3 版更改: The protocol parameter was added.
-
pickle.
loads
(string)¶ Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation are ignored.
The pickle
module also defines three exceptions:
-
exception
pickle.
PickleError
¶ A common base class for the other exceptions defined below. This inherits from
Exception
.
-
exception
pickle.
PicklingError
¶ This exception is raised when an unpicklable object is passed to the
dump()
method.
-
exception
pickle.
UnpicklingError
¶ This exception is raised when there is a problem unpickling an object. Note that other exceptions may also be raised during unpickling, including (but not necessarily limited to)
AttributeError
,EOFError
,ImportError
, andIndexError
.
The pickle
module also exports two callables [2], Pickler
and
Unpickler
:
-
class
pickle.
Pickler
(file[, protocol])¶ This takes a file-like object to which it will write a pickle data stream.
If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL
, the highest protocol version will be used.在 2.3 版更改: Introduced the protocol parameter.
file must have a
write()
method that accepts a single string argument. It can thus be an open file object, aStringIO
object, or any other custom object that meets this interface.Pickler
objects define one (or two) public methods:-
dump
(obj)¶ Write a pickled representation of obj to the open file object given in the constructor. Either the binary or ASCII format will be used, depending on the value of the protocol argument passed to the constructor.
-
clear_memo
()¶ Clears the pickler’s “memo”. The memo is the data structure that remembers which objects the pickler has already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful when re-using picklers.
注解
Prior to Python 2.3,
clear_memo()
was only available on the picklers created bycPickle
. In thepickle
module, picklers have an instance variable calledmemo
which is a Python dictionary. So to clear the memo for apickle
module pickler, you could do the following:mypickler.memo.clear()
Code that does not need to support older versions of Python should simply use
clear_memo()
.
-
It is possible to make multiple calls to the dump()
method of the same
Pickler
instance. These must then be matched to the same number of
calls to the load()
method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump()
calls, the
load()
will all yield references to the same object. [3]
Unpickler
objects are defined as:
-
class
pickle.
Unpickler
(file)¶ This takes a file-like object from which it will read a pickle data stream. This class automatically determines whether the data stream was written in binary mode or not, so it does not need a flag as in the
Pickler
factory.file must have two methods, a
read()
method that takes an integer argument, and areadline()
method that requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, aStringIO
object, or any other custom object that meets this interface.Unpickler
objects have one (or two) public methods:-
load
()¶ Read a pickled object representation from the open file object given in the constructor, and return the reconstituted object hierarchy specified therein.
This method automatically determines whether the data stream was written in binary mode or not.
-
noload
()¶ This is just like
load()
except that it doesn’t actually create any objects. This is useful primarily for finding what’s called “persistent ids” that may be referenced in a pickle data stream. See section The pickle protocol below for more details.Note: the
noload()
method is currently only available onUnpickler
objects created with thecPickle
module.pickle
moduleUnpickler
s do not have thenoload()
method.
-
11.1.4. What can be pickled and unpickled?¶
The following types can be pickled:
None
,True
, andFalse
- integers, long integers, floating point numbers, complex numbers
- normal and Unicode strings
- tuples, lists, sets, and dictionaries containing only picklable objects
- functions defined at the top level of a module
- built-in functions defined at the top level of a module
- classes that are defined at the top level of a module
- instances of such classes whose
__dict__
or the result of calling__getstate__()
is picklable (see section The pickle protocol for details).
Attempts to pickle unpicklable objects will raise the PicklingError
exception; when this happens, an unspecified number of bytes may have already
been written to the underlying file. Trying to pickle a highly recursive data
structure may exceed the maximum recursion depth, a RuntimeError
will be
raised in this case. You can carefully raise this limit with
sys.setrecursionlimit()
.
Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This means that only the function name is pickled, along with the name of the module the function is defined in. Neither the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the unpickling environment, and the module must contain the named object, otherwise an exception will be raised. [4]
Similarly, classes are pickled by named reference, so the same restrictions in
the unpickling environment apply. Note that none of the class’s code or data is
pickled, so in the following example the class attribute attr
is not
restored in the unpickling environment:
class Foo:
attr = 'a class attr'
picklestring = pickle.dumps(Foo)
These restrictions are why picklable functions and classes must be defined in the top level of a module.
Similarly, when class instances are pickled, their class’s code and data are not
pickled along with them. Only the instance data are pickled. This is done on
purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you
plan to have long-lived objects that will see many versions of a class, it may
be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class’s __setstate__()
method.
11.1.5. The pickle protocol¶
This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects that are being serialized. This protocol provides a standard way for you to define, customize, and control how your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section Subclassing Unpicklers for more details.
11.1.5.1. Pickling and unpickling normal class instances¶
-
object.
__getinitargs__
()¶ When a pickled class instance is unpickled, its
__init__()
method is normally not invoked. If it is desirable that the__init__()
method be called on unpickling, an old-style class can define a method__getinitargs__()
, which should return a tuple of positional arguments to be passed to the class constructor (__init__()
for example). Keyword arguments are not supported. The__getinitargs__()
method is called at pickle time; the tuple it returns is incorporated in the pickle for the instance.
-
object.
__getnewargs__
()¶ New-style types can provide a
__getnewargs__()
method that is used for protocol 2. Implementing this method is needed if the type establishes some internal invariants when the instance is created, or if the memory allocation is affected by the values passed to the__new__()
method for the type (as it is for tuples and strings). Instances of a new-style classC
are created usingobj = C.__new__(C, *args)
where args is the result of calling
__getnewargs__()
on the original object; if there is no__getnewargs__()
, an empty tuple is assumed.
-
object.
__getstate__
()¶ Classes can further influence how their instances are pickled; if the class defines the method
__getstate__()
, it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary. If there is no__getstate__()
method, the instance’s__dict__
is pickled.
-
object.
__setstate__
(state)¶ Upon unpickling, if the class also defines the method
__setstate__()
, it is called with the unpickled state. [5] If there is no__setstate__()
method, the pickled state must be a dictionary and its items are assigned to the new instance’s dictionary. If a class defines both__getstate__()
and__setstate__()
, the state object needn’t be a dictionary and these methods can do what they want. [6]注解
For new-style classes, if
__getstate__()
returns a false value, the__setstate__()
method will not be called.
注解
At unpickling time, some methods like __getattr__()
,
__getattribute__()
, or __setattr__()
may be called upon the
instance. In case those methods rely on some internal invariant being
true, the type should implement either __getinitargs__()
or
__getnewargs__()
to establish such an invariant; otherwise, neither
__new__()
nor __init__()
will be called.
11.1.5.2. Pickling and unpickling extension types¶
-
object.
__reduce__
()¶ When the
Pickler
encounters an object of a type it knows nothing about — such as an extension type — it looks in two places for a hint of how to pickle it. One alternative is for the object to implement a__reduce__()
method. If provided, at pickling time__reduce__()
will be called with no arguments, and it must return either a string or a tuple.If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce__()
should be the object’s local name relative to its module; the pickle module searches the module namespace to determine the object’s module.When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted, or
None
can be provided as their value. The contents of this tuple are pickled as normal and used to reconstruct the object at unpickling time. The semantics of each element are:A callable object that will be called to create the initial version of the object. The next element of the tuple will provide arguments for this callable, and later elements provide additional state information that will subsequently be used to fully reconstruct the pickled data.
In the unpickling environment this object must be either a class, a callable registered as a “safe constructor” (see below), or it must have an attribute
__safe_for_unpickling__
with a true value. Otherwise, anUnpicklingError
will be raised in the unpickling environment. Note that as usual, the callable itself is pickled by name.A tuple of arguments for the callable object.
在 2.5 版更改: Formerly, this argument could also be
None
.Optionally, the object’s state, which will be passed to the object’s
__setstate__()
method as described in section Pickling and unpickling normal class instances. If the object has no__setstate__()
method, then, as above, the value must be a dictionary and it will be added to the object’s__dict__
.Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled, and appended to the object using either
obj.append(item)
orobj.extend(list_of_items)
. This is primarily used for list subclasses, but may be used by other classes as long as they haveappend()
andextend()
methods with the appropriate signature. (Whetherappend()
orextend()
is used depends on which pickle protocol version is used as well as the number of items to append, so both must be supported.)Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the form
(key, value)
. These items will be pickled and stored to the object usingobj[key] = value
. This is primarily used for dictionary subclasses, but may be used by other classes as long as they implement__setitem__()
.
-
object.
__reduce_ex__
(protocol)¶ It is sometimes useful to know the protocol version when implementing
__reduce__()
. This can be done by implementing a method named__reduce_ex__()
instead of__reduce__()
.__reduce_ex__()
, when it exists, is called in preference over__reduce__()
(you may still provide__reduce__()
for backwards compatibility). The__reduce_ex__()
method will be called with a single integer argument, the protocol version.The
object
class implements both__reduce__()
and__reduce_ex__()
; however, if a subclass overrides__reduce__()
but not__reduce_ex__()
, the__reduce_ex__()
implementation detects this and calls__reduce__()
.
An alternative to implementing a __reduce__()
method on the object to be
pickled, is to register the callable with the copy_reg
module. This
module provides a way for programs to register “reduction functions” and
constructors for user-defined types. Reduction functions have the same
semantics and interface as the __reduce__()
method described above, except
that they are called with a single argument, the object to be pickled.
The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.
11.1.5.3. Pickling and unpickling external objects¶
For the benefit of object persistence, the pickle
module supports the
notion of a reference to an object outside the pickled data stream. Such
objects are referenced by a “persistent id”, which is just an arbitrary string
of printable ASCII characters. The resolution of such names is not defined by
the pickle
module; it will delegate this resolution to user defined
functions on the pickler and unpickler. [7]
To define external persistent id resolution, you need to set the
persistent_id
attribute of the pickler object and the
persistent_load
attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a
custom persistent_id()
method that takes an object as an
argument and returns either None
or the persistent id for that object.
When None
is returned, the pickler simply pickles the object as normal.
When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a
persistent id.
To unpickle external objects, the unpickler must have a custom
persistent_load()
function that takes a persistent id string
and returns the referenced object.
Here’s a silly example that might shed more light:
import pickle
from cStringIO import StringIO
src = StringIO()
p = pickle.Pickler(src)
def persistent_id(obj):
if hasattr(obj, 'x'):
return 'the value %d' % obj.x
else:
return None
p.persistent_id = persistent_id
class Integer:
def __init__(self, x):
self.x = x
def __str__(self):
return 'My name is integer %d' % self.x
i = Integer(7)
print i
p.dump(i)
datastream = src.getvalue()
print repr(datastream)
dst = StringIO(datastream)
up = pickle.Unpickler(dst)
class FancyInteger(Integer):
def __str__(self):
return 'I am the integer %d' % self.x
def persistent_load(persid):
if persid.startswith('the value '):
value = int(persid.split()[2])
return FancyInteger(value)
else:
raise pickle.UnpicklingError, 'Invalid persistent id'
up.persistent_load = persistent_load
j = up.load()
print j
In the cPickle
module, the unpickler’s persistent_load
attribute can also be set to a Python list, in which case, when the unpickler
reaches a persistent id, the persistent id string will simply be appended to
this list. This functionality exists so that a pickle data stream can be
“sniffed” for object references without actually instantiating all the objects
in a pickle.
[8] Setting persistent_load
to a list is usually used in
conjunction with the noload()
method on the Unpickler.
11.1.6. Subclassing Unpicklers¶
By default, unpickling will import any class that it finds in the pickle data.
You can control exactly what gets unpickled and what gets called by customizing
your unpickler. Unfortunately, exactly how you do this is different depending
on whether you’re using pickle
or cPickle
. [9]
In the pickle
module, you need to derive a subclass from
Unpickler
, overriding the load_global()
method.
load_global()
should read two lines from the pickle data stream where the
first line will the name of the module containing the class and the second line
will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it
finds to the unpickler’s stack. Later on, this class will be assigned to the
__class__
attribute of an empty class, as a way of magically creating an
instance without calling its class’s __init__()
. Your job (should you
choose to accept it), would be to have load_global()
push onto the
unpickler’s stack, a known safe version of any class you deem safe to unpickle.
It is up to you to produce such a class. Or you could raise an error if you
want to disallow all unpickling of instances. If this sounds like a hack,
you’re right. Refer to the source code to make this work.
Things are a little cleaner with cPickle
, but not by much. To control
what gets unpickled, you can set the unpickler’s find_global
attribute to a function or None
. If it is None
then any attempts to
unpickle instances will raise an UnpicklingError
. If it is a function,
then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and
performing any necessary imports, and it may raise an error to prevent
instances of the class from being unpickled.
The moral of the story is that you should be really careful about the source of the strings your application unpickles.
11.1.7. Example¶
For the simplest code, use the dump()
and load()
functions. Note
that a self-referencing list is pickled and restored correctly.
import pickle
data1 = {'a': [1, 2.0, 3, 4+6j],
'b': ('string', u'Unicode string'),
'c': None}
selfref_list = [1, 2, 3]
selfref_list.append(selfref_list)
output = open('data.pkl', 'wb')
# Pickle dictionary using protocol 0.
pickle.dump(data1, output)
# Pickle the list using the highest protocol available.
pickle.dump(selfref_list, output, -1)
output.close()
The following example reads the resulting pickled data. When reading a pickle-containing file, you should open the file in binary mode because you can’t be sure if the ASCII or binary format was used.
import pprint, pickle
pkl_file = open('data.pkl', 'rb')
data1 = pickle.load(pkl_file)
pprint.pprint(data1)
data2 = pickle.load(pkl_file)
pprint.pprint(data2)
pkl_file.close()
Here’s a larger example that shows how to modify pickling behavior for a class.
The TextReader
class opens a text file, and returns the line number and
line contents each time its readline()
method is called. If a
TextReader
instance is pickled, all attributes except the file object
member are saved. When the instance is unpickled, the file is reopened, and
reading resumes from the last location. The __setstate__()
and
__getstate__()
methods are used to implement this behavior.
#!/usr/local/bin/python
class TextReader:
"""Print and number lines in a text file."""
def __init__(self, file):
self.file = file
self.fh = open(file)
self.lineno = 0
def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)
def __getstate__(self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh'] # remove filehandle entry
return odict
def __setstate__(self, dict):
fh = open(dict['file']) # reopen file
count = dict['lineno'] # read from file...
while count: # until line count is restored
fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.fh = fh # save the file object
A sample usage might be something like this:
>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
'1: #!/usr/local/bin/python'
>>> obj.readline()
'2: '
>>> obj.readline()
'3: class TextReader:'
>>> import pickle
>>> pickle.dump(obj, open('save.p', 'wb'))
If you want to see that pickle
works across Python processes, start
another Python session, before continuing. What follows can happen from either
the same process or a new process.
>>> import pickle
>>> reader = pickle.load(open('save.p', 'rb'))
>>> reader.readline()
'4: """Print and number lines in a text file."""'
11.2. cPickle
— A faster pickle
¶
The cPickle
module supports serialization and de-serialization of Python
objects, providing an interface and functionality nearly identical to the
pickle
module. There are several differences, the most important being
performance and subclassability.
First, cPickle
can be up to 1000 times faster than pickle
because
the former is implemented in C. Second, in the cPickle
module the
callables Pickler()
and Unpickler()
are functions, not classes.
This means that you cannot use them to derive custom pickling and unpickling
subclasses. Most applications have no need for this functionality and should
benefit from the greatly improved performance of the cPickle
module.
The pickle data stream produced by pickle
and cPickle
are
identical, so it is possible to use pickle
and cPickle
interchangeably with existing pickles. [10]
There are additional minor differences in API between cPickle
and
pickle
, however for most applications, they are interchangeable. More
documentation is provided in the pickle
module documentation, which
includes a list of the documented differences.
脚注
[1] | Don’t confuse this with the marshal module |
[2] | In the pickle module these callables are classes, which you could
subclass to customize the behavior. However, in the cPickle module these
callables are factory functions and so cannot be subclassed. One common reason
to subclass is to control what objects can actually be unpickled. See section
Subclassing Unpicklers for more details. |
[3] | Warning: this is intended for pickling multiple objects without intervening
modifications to the objects or their parts. If you modify an object and then
pickle it again using the same Pickler instance, the object is not
pickled again — a reference to it is pickled and the Unpickler will
return the old value, not the modified one. There are two problems here: (1)
detecting changes, and (2) marshalling a minimal set of changes. Garbage
Collection may also become a problem here. |
[4] | The exception raised will likely be an ImportError or an
AttributeError but it could be something else. |
[5] | These methods can also be used to implement copying class instances. |
[6] | This protocol is also used by the shallow and deep copying operations defined in
the copy module. |
[7] | The actual mechanism for associating these user defined functions is slightly
different for pickle and cPickle . The description given here
works the same for both implementations. Users of the pickle module
could also use subclassing to effect the same results, overriding the
persistent_id() and persistent_load() methods in the derived
classes. |
[8] | We’ll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms. |
[9] | A word of caution: the mechanisms described here use internal attributes and
methods, which are subject to change in future versions of Python. We intend to
someday provide a common interface for controlling this behavior, which will
work in either pickle or cPickle . |
[10] | Since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always be able to read each other’s data streams. |