16.6. multiprocessing
— Process-based “threading” interface¶
2.6 新版功能.
16.6.1. 概述¶
multiprocessing
是一个用与 threading
模块相似API的支持产生进程的包。 multiprocessing
包同时提供本地和远程并发,使用子进程代替线程,有效避免 Global Interpreter Lock 带来的影响。因此, multiprocessing
模块允许程序员充分利用机器上的多个核心。Unix 和 Windows 上都可以运行。
The multiprocessing
module also introduces APIs which do not have
analogs in the threading
module. A prime example of this is the
Pool
object which offers a convenient means of parallelizing the
execution of a function across multiple input values, distributing the
input data across processes (data parallelism). The following example
demonstrates the common practice of defining such functions in a module so
that child processes can successfully import that module. This basic example
of data parallelism using Pool
,
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
p = Pool(5)
print(p.map(f, [1, 2, 3]))
将打印到标准输出
[1, 4, 9]
16.6.1.1. Process
类¶
在 multiprocessing
中,通过创建一个 Process
对象然后调用它的 start()
方法来生成进程。 Process
和 threading.Thread
API 相同。 一个简单的多进程程序示例是:
from multiprocessing import Process
def f(name):
print 'hello', name
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
要显示所涉及的各个进程ID,这是一个扩展示例:
from multiprocessing import Process
import os
def info(title):
print title
print 'module name:', __name__
if hasattr(os, 'getppid'): # only available on Unix
print 'parent process:', os.getppid()
print 'process id:', os.getpid()
def f(name):
info('function f')
print 'hello', name
if __name__ == '__main__':
info('main line')
p = Process(target=f, args=('bob',))
p.start()
p.join()
For an explanation of why (on Windows) the if __name__ == '__main__'
part is
necessary, see Programming guidelines.
16.6.1.2. 在进程之间交换对象¶
multiprocessing
支持进程之间的两种通信通道:
队列
The
Queue
class is a near clone ofQueue.Queue
. For example:from multiprocessing import Process, Queue def f(q): q.put([42, None, 'hello']) if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() print q.get() # prints "[42, None, 'hello']" p.join()队列是线程和进程安全的。
管道
Pipe()
函数返回一个由管道连接的连接对象,默认情况下是双工(双向)。例如:from multiprocessing import Process, Pipe def f(conn): conn.send([42, None, 'hello']) conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print parent_conn.recv() # prints "[42, None, 'hello']" p.join()返回的两个连接对象
Pipe()
表示管道的两端。每个连接对象都有send()
和recv()
方法(相互之间的)。请注意,如果两个进程(或线程)同时尝试读取或写入管道的 同一 端,则管道中的数据可能会损坏。当然,同时使用管道的不同端的进程不存在损坏的风险。
16.6.1.3. 进程之间的同步¶
multiprocessing
包含来自 threading
的所有同步基本体的等价物。例如,可以使用锁来确保一次只有一个进程打印到标准输出:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
print 'hello world', i
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
不使用来自不同进程的锁输出容易产生混淆。
16.6.1.4. 在进程之间共享状态¶
如上所述,在进行并发编程时,通常最好尽量避免使用共享状态。使用多个进程时尤其如此。
但是,如果你真的需要使用一些共享数据,那么 multiprocessing
提供了两种方法。
共享内存
可以使用
Value
或Array
将数据存储在共享内存映射中。例如,以下代码:from multiprocessing import Process, Value, Array def f(n, a): n.value = 3.1415927 for i in range(len(a)): a[i] = -a[i] if __name__ == '__main__': num = Value('d', 0.0) arr = Array('i', range(10)) p = Process(target=f, args=(num, arr)) p.start() p.join() print num.value print arr[:]将打印
3.1415927 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]创建
num
和arr
时使用的'd'
和'i'
参数是array
模块使用的类型的 typecode :'d'
表示双精度浮点数,'i'
表示有符号整数。这些共享对象将是进程和线程安全的。为了更灵活地使用共享内存,可以使用
multiprocessing.sharedctypes
模块,该模块支持创建从共享内存分配的任意ctypes对象。
服务器进程
由
Manager()
返回的管理器对象控制一个服务器进程,该进程保存Python对象并允许其他进程使用代理操作它们。A manager returned by
Manager()
will support typeslist
,dict
,Namespace
,Lock
,RLock
,Semaphore
,BoundedSemaphore
,Condition
,Event
,Queue
,Value
andArray
. For example,from multiprocessing import Process, Manager def f(d, l): d[1] = '1' d['2'] = 2 d[0.25] = None l.reverse() if __name__ == '__main__': manager = Manager() d = manager.dict() l = manager.list(range(10)) p = Process(target=f, args=(d, l)) p.start() p.join() print d print l将打印
{0.25: None, 1: '1', '2': 2} [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]服务器进程管理器比使用共享内存对象更灵活,因为它们可以支持任意对象类型。此外,单个管理器可以通过网络由不同计算机上的进程共享。但是,它们比使用共享内存慢。
16.6.1.5. 使用工作进程¶
Pool
类表示一个工作进程池。它具有允许以几种不同方式将任务分配到工作进程的方法。
例如:
from multiprocessing import Pool, TimeoutError
import time
import os
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
# print "[0, 1, 4,..., 81]"
print pool.map(f, range(10))
# print same numbers in arbitrary order
for i in pool.imap_unordered(f, range(10)):
print i
# evaluate "f(20)" asynchronously
res = pool.apply_async(f, (20,)) # runs in *only* one process
print res.get(timeout=1) # prints "400"
# evaluate "os.getpid()" asynchronously
res = pool.apply_async(os.getpid, ()) # runs in *only* one process
print res.get(timeout=1) # prints the PID of that process
# launching multiple evaluations asynchronously *may* use more processes
multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
print [res.get(timeout=1) for res in multiple_results]
# make a single worker sleep for 10 secs
res = pool.apply_async(time.sleep, (10,))
try:
print res.get(timeout=1)
except TimeoutError:
print "We lacked patience and got a multiprocessing.TimeoutError"
请注意,池的方法只能由创建它的进程使用。
注解
Functionality within this package requires that the __main__
module be
importable by the children. This is covered in Programming guidelines
however it is worth pointing out here. This means that some examples, such
as the Pool
examples will not work in the interactive interpreter.
For example:
>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'
(如果你尝试这个,它实际上会以半随机的方式输出三个完整的回溯,然后你可能不得不以某种方式停止主进程。)
16.6.2. 参考¶
multiprocessing
包大部分复制了 threading
模块的API。
16.6.2.1. Process
和异常¶
-
class
multiprocessing.
Process
(group=None, target=None, name=None, args=(), kwargs={})¶ 进程对象表示在单独进程中运行的活动。
Process
类等价于threading.Thread
。The constructor should always be called with keyword arguments. group should always be
None
; it exists solely for compatibility withthreading.Thread
. target is the callable object to be invoked by therun()
method. It defaults toNone
, meaning nothing is called. name is the process name. By default, a unique name is constructed of the form ‘Process-N1:N2:…:Nk’ where N1,N2,…,Nk is a sequence of integers whose length is determined by the generation of the process. args is the argument tuple for the target invocation. kwargs is a dictionary of keyword arguments for the target invocation. By default, no arguments are passed to target.如果子类重写构造函数,它必须确保它在对进程执行任何其他操作之前调用基类构造函数(
Process.__init__()
)。-
run
()¶ 表示进程活动的方法。
你可以在子类中重载此方法。标准
run()
方法调用传递给对象构造函数的可调用对象作为目标参数(如果有),分别从 args 和 kwargs 参数中获取顺序和关键字参数。
-
join
([timeout])¶ Block the calling thread until the process whose
join()
method is called terminates or until the optional timeout occurs.If timeout is
None
then there is no timeout.一个进程可以合并多次。
进程无法并入自身,因为这会导致死锁。尝试在启动进程之前合并进程是错误的。
-
name
¶ The process’s name.
The name is a string used for identification purposes only. It has no semantics. Multiple processes may be given the same name. The initial name is set by the constructor.
-
daemon
¶ 进程的守护标志,一个布尔值。这必须在
start()
被调用之前设置。初始值继承自创建进程。
当进程退出时,它会尝试终止其所有守护进程子进程。
请注意,不允许守护进程创建子进程。否则,守护进程会在子进程退出时终止其子进程。 另外,这些 不是 Unix守护进程或服务,它们是正常进程,如果非守护进程已经退出,它们将被终止(并且不被合并)。
除了
threading.Thread
API ,Process
对象还支持以下属性和方法:-
pid
¶ 返回进程ID。在生成该进程之前,这将是
None
。
-
exitcode
¶ 的退子进程出代码。如果进程尚未终止,这将是
None
。负值 -N 表示孩子被信号 N 终止。
-
authkey
¶ 进程的身份验证密钥(字节字符串)。
当
multiprocessing
初始化时,主进程使用os.urandom()
分配一个随机字符串。当创建
Process
对象时,它将继承其父进程的身份验证密钥,尽管可以通过将authkey
设置为另一个字节字符串来更改。参见 Authentication keys 。
-
terminate
()¶ 终止进程。 在Unix上,这是使用
SIGTERM
信号完成的;在Windows上使用TerminateProcess()
。 请注意,不会执行退出处理程序和finally子句等。请注意,进程的后代进程将不会被终止 —— 它们将简单地变成孤立的。
警告
如果在关联进程使用管道或队列时使用此方法,则管道或队列可能会损坏,并可能无法被其他进程使用。类似地,如果进程已获得锁或信号量等,则终止它可能导致其他进程死锁。
注意
start()
、join()
、is_alive()
、terminate()
和exitcode
方法只能由创建进程对象的进程调用。Process
一些方法的示例用法:>>> import multiprocessing, time, signal >>> p = multiprocessing.Process(target=time.sleep, args=(1000,)) >>> print p, p.is_alive() <Process(Process-1, initial)> False >>> p.start() >>> print p, p.is_alive() <Process(Process-1, started)> True >>> p.terminate() >>> time.sleep(0.1) >>> print p, p.is_alive() <Process(Process-1, stopped[SIGTERM])> False >>> p.exitcode == -signal.SIGTERM True
-
-
exception
multiprocessing.
BufferTooShort
¶ 当提供的缓冲区对象太小而无法读取消息时,
Connection.recv_bytes_into()
引发的异常。如果
e
是一个BufferTooShort
实例,那么e.args[0]
将把消息作为字节字符串给出。
16.6.2.2. 管道和队列¶
使用多进程时,一般使用消息机制实现进程间通信,尽可能避免使用同步原语,例如锁。
消息机制包含: Pipe()
(可以用于在两个进程间传递消息),以及队列(能够在多个生产者和消费者之间通信)。
The Queue
, multiprocessing.queues.SimpleQueue
and JoinableQueue
types are multi-producer,
multi-consumer FIFO queues modelled on the Queue.Queue
class in the
standard library. They differ in that Queue
lacks the
task_done()
and join()
methods introduced
into Python 2.5’s Queue.Queue
class.
如果你使用了 JoinableQueue
,那么你**必须**对每个已经移出队列的任务调用 JoinableQueue.task_done()
。不然的话用于统计未完成任务的信号量最终会溢出并抛出异常。
另外还可以通过使用一个管理器对象创建一个共享队列,详见 Managers 。
注解
multiprocessing
uses the usual Queue.Empty
and
Queue.Full
exceptions to signal a timeout. They are not available in
the multiprocessing
namespace so you need to import them from
Queue
.
注解
当一个对象被放入一个队列中时,这个对象首先会被一个后台线程用pickle序列化,并将序列化后的数据通过一个底层管道的管道传递到队列中。这种做法会有点让人惊讶,但一般不会出现什么问题。如果它们确实妨碍了你,你可以使用一个由管理器 manager 创建的队列替换它。
- After putting an object on an empty queue there may be an
infinitesimal delay before the queue’s
empty()
method returnsFalse
andget_nowait()
can return without raisingQueue.Empty
. - 如果有多个进程同时将对象放入队列,那么在队列的另一端接受到的对象可能是无序的。但是由同一个进程放入的多个对象的顺序在另一端输出时总是一样的。
警告
If a process is killed using Process.terminate()
or os.kill()
while it is trying to use a Queue
, then the data in the queue is
likely to become corrupted. This may cause any other process to get an
exception when it tries to use the queue later on.
警告
正如刚才提到的,如果一个子进程将一些对象放进队列中 (并且它没有用 JoinableQueue.cancel_join_thread
方法),那么这个进程在所有缓冲区的对象被刷新进管道之前,是不会终止的。
这意味着,除非你确定所有放入队列中的对象都已经被消费了,否则如果你试图等待这个进程,你可能会陷入死锁中。相似地,如果该子进程不是后台进程,那么父进程可能在试图等待所有非后台进程退出时挂起。
注意用管理器创建的队列不存在这个问题,详见 Programming guidelines 。
该 示例 展示了如何使用队列实现进程间通信。
-
multiprocessing.
Pipe
([duplex])¶ Returns a pair
(conn1, conn2)
ofConnection
objects representing the ends of a pipe.如果 duplex 被置为
True
(默认值),那么该管道是双向的。如果 duplex 被置为False
,那么该管道是单向的,即conn1
只能用于接收消息,而conn2
仅能用于发送消息。
-
class
multiprocessing.
Queue
([maxsize])¶ 返回一个使用一个管道和少量锁和信号量实现的共享队列实例。当一个进程将一个对象放进队列中时,一个写入线程会启动并将对象从缓冲区写入管道中。
The usual
Queue.Empty
andQueue.Full
exceptions from the standard library’sQueue
module are raised to signal timeouts.Queue
implements all the methods ofQueue.Queue
except fortask_done()
andjoin()
.-
qsize
()¶ 返回队列的大致长度。由于多线程或者多进程的上下文,这个数字是不可靠的。
注意,在 Unix 平台上,例如 Mac OS X ,这个方法可能会抛出
NotImplementedError
异常,因为该平台没有实现sem_getvalue()
。
-
empty
()¶ 如果队列是空的,返回
True
,反之返回False
。 由于多线程或多进程的环境,该状态是不可靠的。
-
full
()¶ 如果队列是满的,返回
True
,反之返回False
。 由于多线程或多进程的环境,该状态是不可靠的。
-
put
(obj[, block[, timeout]])¶ Put obj into the queue. If the optional argument block is
True
(the default) and timeout isNone
(the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises theQueue.Full
exception if no free slot was available within that time. Otherwise (block isFalse
), put an item on the queue if a free slot is immediately available, else raise theQueue.Full
exception (timeout is ignored in that case).
-
put_nowait
(obj)¶ 相当于
put(obj, False)
。
-
get
([block[, timeout]])¶ Remove and return an item from the queue. If optional args block is
True
(the default) and timeout isNone
(the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises theQueue.Empty
exception if no item was available within that time. Otherwise (block isFalse
), return an item if one is immediately available, else raise theQueue.Empty
exception (timeout is ignored in that case).
-
get_nowait
()¶ 相当于
get(False)
。
Queue
has a few additional methods not found inQueue.Queue
. These methods are usually unnecessary for most code:-
close
()¶ 指示当前进程将不会再往队列中放入对象。一旦所有缓冲区中的数据被写入管道之后,后台的线程会退出。这个方法在队列被gc回收时会自动调用。
-
join_thread
()¶ 等待后台线程。这个方法仅在调用了
close()
方法之后可用。这会阻塞当前进程,直到后台线程退出,确保所有缓冲区中的数据都被写入管道中。默认情况下,如果一个不是队列创建者的进程试图退出,它会尝试等待这个队列的后台线程。这个进程可以使用
cancel_join_thread()
让join_thread()
方法什么都不做直接跳过。
-
cancel_join_thread
()¶ 防止
join_thread()
方法阻塞当前进程。具体而言,这防止进程退出时自动等待后台线程退出。详见join_thread()
。可能这个方法称为”
allow_exit_without_flush()
“ 会更好。这有可能会导致正在排队进入队列的数据丢失,大多数情况下你不需要用到这个方法,仅当你不关心底层管道中可能丢失的数据,只是希望进程能够马上退出时使用。
注解
该类的功能依赖于宿主操作系统具有可用的共享信号量实现。否则该类将被禁用,任何试图实例化一个
Queue
对象的操作都会抛出ImportError
异常,更多信息详见 bpo-3770 。后续说明的任何专用队列对象亦如此。-
-
class
multiprocessing.queues.
SimpleQueue
¶ It is a simplified
Queue
type, very close to a lockedPipe
.-
empty
()¶ 如果队列为空返回
True
,否则返回False
。
-
get
()¶ 从队列中移出并返回一个对象。
-
put
(item)¶ 将 item 放入队列。
-
-
class
multiprocessing.
JoinableQueue
([maxsize])¶ JoinableQueue
, aQueue
subclass, is a queue which additionally hastask_done()
andjoin()
methods.-
task_done
()¶ Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each
get()
used to fetch a task, a subsequent call totask_done()
tells the queue that the processing on the task is complete.If a
join()
is currently blocking, it will resume when all items have been processed (meaning that atask_done()
call was received for every item that had beenput()
into the queue).如果被调用的次数多于放入队列中的项目数量,将引发
ValueError
异常 。
-
join
()¶ 阻塞至队列中所有的元素都被接收和处理完毕。
The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls
task_done()
to indicate that the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero,join()
unblocks.
-
16.6.2.3. 杂项¶
-
multiprocessing.
active_children
()¶ 返回当前进程存活的子进程的列表。
调用该方法有“等待”已经结束的进程的副作用。
-
multiprocessing.
cpu_count
()¶ Return the number of CPUs in the system. May raise
NotImplementedError
.
-
multiprocessing.
freeze_support
()¶ 为使用了
multiprocessing
的程序,提供冻结以产生 Windows 可执行文件的支持。(在 py2exe, PyInstaller 和 cx_Freeze 上测试通过)需要在 main 模块的
if __name__ == '__main__'
该行之后马上调用该函数。例如:from multiprocessing import Process, freeze_support def f(): print 'hello world!' if __name__ == '__main__': freeze_support() Process(target=f).start()
如果没有调用
freeze_support()
在尝试运行被冻结的可执行文件时会抛出RuntimeError
异常。对
freeze_support()
的调用在非 Windows 平台上是无效的。如果该模块在 Windows 平台的 Python 解释器中正常运行 (该程序没有被冻结), 调用``freeze_support()`` 也是无效的。
-
multiprocessing.
set_executable
()¶ 设置在启动子进程时使用的 Python 解释器路径。 ( 默认使用
sys.executable
) 嵌入式编程人员可能需要这样做:set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))
before they can create child processes. (Windows only)
注解
multiprocessing
并没有包含类似 threading.active_count()
, threading.enumerate()
, threading.settrace()
, threading.setprofile()
, threading.Timer
, 或者 threading.local
的方法和类。
16.6.2.4. 连接(Connection)对象¶
Connection 对象允许收发可以序列化的对象或字符串。它们可以看作面向消息的连接套接字。
通常使用 Pipe
创建 Connection 对象。详见 : Listeners and Clients.
-
class
Connection
¶ -
send
(obj)¶ 将一个对象发送到连接的另一端,可以用
recv()
读取。The object must be picklable. Very large pickles (approximately 32 MB+, though it depends on the OS) may raise a
ValueError
exception.
-
fileno
()¶ 返回由连接对象使用的描述符或者句柄。
-
close
()¶ 关闭连接对象。
当连接对象被垃圾回收时会自动调用。
-
poll
([timeout])¶ 返回连接对象中是否有可以读取的数据。
如果未指定 timeout ,此方法会马上返回。如果 timeout 是一个数字,则指定了最大阻塞的秒数。如果 timeout 是
None
,那么将一直等待,不会超时。
-
send_bytes
(buffer[, offset[, size]])¶ Send byte data from an object supporting the buffer interface as a complete message.
If offset is given then data is read from that position in buffer. If size is given then that many bytes will be read from buffer. Very large buffers (approximately 32 MB+, though it depends on the OS) may raise a
ValueError
exception
-
recv_bytes
([maxlength])¶ 以字符串形式返回一条从连接对象另一端发送过来的字节数据。此方法在接收到数据前将一直阻塞。 如果连接对象被对端关闭或者没有数据可读取,将抛出
EOFError
异常。If maxlength is specified and the message is longer than maxlength then
IOError
is raised and the connection will no longer be readable.
-
recv_bytes_into
(buffer[, offset])¶ 将一条完整的字节数据消息读入 buffer 中并返回消息的字节数。 此方法在接收到数据前将一直阻塞。 如果连接对象被对端关闭或者没有数据可读取,将抛出
EOFError
异常。buffer must be an object satisfying the writable buffer interface. If offset is given then the message will be written into the buffer from that position. Offset must be a non-negative integer less than the length of buffer (in bytes).
如果缓冲区太小,则将引发
BufferTooShort
异常,并且完整的消息将会存放在异常实例e
的e.args[0]
中。
-
例如:
>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, 'hello', None])
>>> b.recv()
[1, 'hello', None]
>>> b.send_bytes('thank you')
>>> a.recv_bytes()
'thank you'
>>> import array
>>> arr1 = array.array('i', range(5))
>>> arr2 = array.array('i', [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])
警告
The Connection.recv()
method automatically unpickles the data it
receives, which can be a security risk unless you can trust the process
which sent the message.
因此, 除非连接对象是由 Pipe()
产生的,在通过一些认证手段之前你应该只使用 recv()
和 send()
方法。参考 Authentication keys 。
警告
如果一个进程在试图读写管道时被终止了,那么管道中的数据很可能是不完整的,因为此时可能无法确定消息的边界。
16.6.2.5. 同步原语¶
通常来说同步愿意在多进程环境中并不像它们在多线程环境中那么必要。参考 threading
模块的文档。
注意可以使用管理器对象创建同步原语,参考 Managers 。
-
class
multiprocessing.
BoundedSemaphore
([value])¶ 非常类似
threading.BoundedSemaphore
的有界信号量对象。A solitary difference from its close analog exists: its
acquire
method’s first argument is named block and it supports an optional second argument timeout, as is consistent withLock.acquire()
.注解
在 Mac OS X 平台上, 该对象于
Semaphore
不同在于sem_getvalue()
方法并没有在该平台上实现。
-
class
multiprocessing.
Condition
([lock])¶ A condition variable: a clone of
threading.Condition
.指定的 lock 参数应该是
multiprocessing
模块中的Lock
或者RLock
对象。
-
class
multiprocessing.
Event
¶ A clone of
threading.Event
. This method returns the state of the internal semaphore on exit, so it will always returnTrue
except if a timeout is given and the operation times out.在 2.7 版更改: Previously, the method always returned
None
.
-
class
multiprocessing.
Lock
¶ 原始锁(非递归锁)对象,类似于
threading.Lock
。一旦一个进程或者线程拿到了锁,后续的任何其他进程或线程的其他请求都会被阻塞直到锁被释放。任何进程或线程都可以释放锁。除非另有说明,否则multiprocessing.Lock
用于进程或者线程的概念和行为都和threading.Lock
一致。注意
Lock
实际上是一个工厂函数。它返回由默认上下文初始化的multiprocessing.synchronize.Lock
对象。Lock
supports the context manager protocol and thus may be used inwith
statements.-
acquire
(block=True, timeout=None)¶ 获得锁,阻塞或非阻塞的。
如果 block 参数被设为
True
( 默认值 ) , 对该方法的调用在锁处于释放状态之前都会阻塞,然后将锁设置为锁住状态并返回True
。需要注意的是第一个参数名与threading.Lock.acquire()
的不同。如果 block 参数被设置成
False
,方法的调用将不会阻塞。 如果锁当前处于锁住状态,将返回False
; 否则将锁设置成锁住状态,并返回True
。When invoked with a positive, floating-point value for timeout, block for at most the number of seconds specified by timeout as long as the lock can not be acquired. Invocations with a negative value for timeout are equivalent to a timeout of zero. Invocations with a timeout value of
None
(the default) set the timeout period to infinite. The timeout argument has no practical implications if the block argument is set toFalse
and is thus ignored. ReturnsTrue
if the lock has been acquired orFalse
if the timeout period has elapsed. Note that the timeout argument does not exist in this method’s analog,threading.Lock.acquire()
.
-
release
()¶ Release a lock. This can be called from any process or thread, not only the process or thread which originally acquired the lock.
Behavior is the same as in
threading.Lock.release()
except that when invoked on an unlocked lock, aValueError
is raised.
-
-
class
multiprocessing.
RLock
¶ A recursive lock object: a close analog of
threading.RLock
. A recursive lock must be released by the process or thread that acquired it. Once a process or thread has acquired a recursive lock, the same process or thread may acquire it again without blocking; that process or thread must release it once for each time it has been acquired.Note that
RLock
is actually a factory function which returns an instance ofmultiprocessing.synchronize.RLock
initialized with a default context.RLock
supports the context manager protocol and thus may be used inwith
statements.-
acquire
(block=True, timeout=None)¶ 获得锁,阻塞或非阻塞的。
When invoked with the block argument set to
True
, block until the lock is in an unlocked state (not owned by any process or thread) unless the lock is already owned by the current process or thread. The current process or thread then takes ownership of the lock (if it does not already have ownership) and the recursion level inside the lock increments by one, resulting in a return value ofTrue
. Note that there are several differences in this first argument’s behavior compared to the implementation ofthreading.RLock.acquire()
, starting with the name of the argument itself.When invoked with the block argument set to
False
, do not block. If the lock has already been acquired (and thus is owned) by another process or thread, the current process or thread does not take ownership and the recursion level within the lock is not changed, resulting in a return value ofFalse
. If the lock is in an unlocked state, the current process or thread takes ownership and the recursion level is incremented, resulting in a return value ofTrue
.Use and behaviors of the timeout argument are the same as in
Lock.acquire()
. Note that the timeout argument does not exist in this method’s analog,threading.RLock.acquire()
.
-
release
()¶ Release a lock, decrementing the recursion level. If after the decrement the recursion level is zero, reset the lock to unlocked (not owned by any process or thread) and if any other processes or threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains locked and owned by the calling process or thread.
Only call this method when the calling process or thread owns the lock. An
AssertionError
is raised if this method is called by a process or thread other than the owner or if the lock is in an unlocked (unowned) state. Note that the type of exception raised in this situation differs from the implemented behavior inthreading.RLock.release()
.
-
-
class
multiprocessing.
Semaphore
([value])¶ A semaphore object: a close analog of
threading.Semaphore
.A solitary difference from its close analog exists: its
acquire
method’s first argument is named block and it supports an optional second argument timeout, as is consistent withLock.acquire()
.
注解
The acquire()
method of BoundedSemaphore
, Lock
,
RLock
and Semaphore
has a timeout parameter not supported
by the equivalents in threading
. The signature is
acquire(block=True, timeout=None)
with keyword parameters being
acceptable. If block is True
and timeout is not None
then it
specifies a timeout in seconds. If block is False
then timeout is
ignored.
On Mac OS X, sem_timedwait
is unsupported, so calling acquire()
with
a timeout will emulate that function’s behavior using a sleeping loop.
注解
If the SIGINT signal generated by Ctrl-C arrives while the main thread is
blocked by a call to BoundedSemaphore.acquire()
, Lock.acquire()
,
RLock.acquire()
, Semaphore.acquire()
, Condition.acquire()
or Condition.wait()
then the call will be immediately interrupted and
KeyboardInterrupt
will be raised.
This differs from the behaviour of threading
where SIGINT will be
ignored while the equivalent blocking calls are in progress.
注解
Some of this package’s functionality requires a functioning shared semaphore
implementation on the host operating system. Without one, the
multiprocessing.synchronize
module will be disabled, and attempts to
import it will result in an ImportError
. See
bpo-3770 for additional information.
16.6.2.7. Managers¶
Managers provide a way to create data which can be shared between different processes. A manager object controls a server process which manages shared objects. Other processes can access the shared objects by using proxies.
Returns a started
SyncManager
object which can be used for sharing objects between processes. The returned manager object corresponds to a spawned child process and has methods which will create shared objects and return corresponding proxies.
Manager processes will be shutdown as soon as they are garbage collected or
their parent process exits. The manager classes are defined in the
multiprocessing.managers
module:
-
class
multiprocessing.managers.
BaseManager
([address[, authkey]])¶ Create a BaseManager object.
Once created one should call
start()
orget_server().serve_forever()
to ensure that the manager object refers to a started manager process.address is the address on which the manager process listens for new connections. If address is
None
then an arbitrary one is chosen.authkey is the authentication key which will be used to check the validity of incoming connections to the server process. If authkey is
None
thencurrent_process().authkey
. Otherwise authkey is used and it must be a string.-
start
([initializer[, initargs]])¶ Start a subprocess to start the manager. If initializer is not
None
then the subprocess will callinitializer(*initargs)
when it starts.
-
get_server
()¶ Returns a
Server
object which represents the actual server under the control of the Manager. TheServer
object supports theserve_forever()
method:>>> from multiprocessing.managers import BaseManager >>> manager = BaseManager(address=('', 50000), authkey='abc') >>> server = manager.get_server() >>> server.serve_forever()
Server
additionally has anaddress
attribute.
-
connect
()¶ Connect a local manager object to a remote manager process:
>>> from multiprocessing.managers import BaseManager >>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc') >>> m.connect()
-
shutdown
()¶ Stop the process used by the manager. This is only available if
start()
has been used to start the server process.它可以被多次调用。
-
register
(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])¶ A classmethod which can be used for registering a type or callable with the manager class.
typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a string.
callable is a callable used for creating objects for this type identifier. If a manager instance will be created using the
from_address()
classmethod or if the create_method argument isFalse
then this can be left asNone
.proxytype is a subclass of
BaseProxy
which is used to create proxies for shared objects with this typeid. IfNone
then a proxy class is created automatically.exposed is used to specify a sequence of method names which proxies for this typeid should be allowed to access using
BaseProxy._callmethod()
. (If exposed isNone
thenproxytype._exposed_
is used instead if it exists.) In the case where no exposed list is specified, all “public methods” of the shared object will be accessible. (Here a “public method” means any attribute which has a__call__()
method and whose name does not begin with'_'
.)method_to_typeid is a mapping used to specify the return type of those exposed methods which should return a proxy. It maps method names to typeid strings. (If method_to_typeid is
None
thenproxytype._method_to_typeid_
is used instead if it exists.) If a method’s name is not a key of this mapping or if the mapping isNone
then the object returned by the method will be copied by value.create_method determines whether a method should be created with name typeid which can be used to tell the server process to create a new shared object and return a proxy for it. By default it is
True
.
BaseManager
instances also have one read-only property:-
address
¶ 管理器所用的地址。
-
-
class
multiprocessing.managers.
SyncManager
¶ A subclass of
BaseManager
which can be used for the synchronization of processes. Objects of this type are returned bymultiprocessing.Manager()
.It also supports creation of shared lists and dictionaries.
-
BoundedSemaphore
([value])¶ Create a shared
threading.BoundedSemaphore
object and return a proxy for it.
-
Condition
([lock])¶ Create a shared
threading.Condition
object and return a proxy for it.If lock is supplied then it should be a proxy for a
threading.Lock
orthreading.RLock
object.
-
Event
()¶ Create a shared
threading.Event
object and return a proxy for it.
-
Lock
()¶ Create a shared
threading.Lock
object and return a proxy for it.
-
Queue
([maxsize])¶ Create a shared
Queue.Queue
object and return a proxy for it.
-
RLock
()¶ Create a shared
threading.RLock
object and return a proxy for it.
-
Semaphore
([value])¶ Create a shared
threading.Semaphore
object and return a proxy for it.
-
Array
(typecode, sequence)¶ Create an array and return a proxy for it.
-
Value
(typecode, value)¶ Create an object with a writable
value
attribute and return a proxy for it.
-
dict
()¶ -
dict
(mapping) -
dict
(sequence) Create a shared
dict
object and return a proxy for it.
-
list
()¶ -
list
(sequence) Create a shared
list
object and return a proxy for it.
注解
Modifications to mutable values or items in dict and list proxies will not be propagated through the manager, because the proxy has no way of knowing when its values or items are modified. To modify such an item, you can re-assign the modified object to the container proxy:
# create a list proxy and append a mutable object (a dictionary) lproxy = manager.list() lproxy.append({}) # now mutate the dictionary d = lproxy[0] d['a'] = 1 d['b'] = 2 # at this point, the changes to d are not yet synced, but by # reassigning the dictionary, the proxy is notified of the change lproxy[0] = d
-
-
class
multiprocessing.managers.
Namespace
¶ A type that can register with
SyncManager
.A namespace object has no public methods, but does have writable attributes. Its representation shows the values of its attributes.
However, when using a proxy for a namespace object, an attribute beginning with
'_'
will be an attribute of the proxy and not an attribute of the referent:>>> manager = multiprocessing.Manager() >>> Global = manager.Namespace() >>> Global.x = 10 >>> Global.y = 'hello' >>> Global._z = 12.3 # this is an attribute of the proxy >>> print Global Namespace(x=10, y='hello')
16.6.2.7.1. Customized managers¶
To create one’s own manager, one creates a subclass of BaseManager
and
uses the register()
classmethod to register new types or
callables with the manager class. For example:
from multiprocessing.managers import BaseManager
class MathsClass(object):
def add(self, x, y):
return x + y
def mul(self, x, y):
return x * y
class MyManager(BaseManager):
pass
MyManager.register('Maths', MathsClass)
if __name__ == '__main__':
manager = MyManager()
manager.start()
maths = manager.Maths()
print maths.add(4, 3) # prints 7
print maths.mul(7, 8) # prints 56
16.6.2.7.2. Using a remote manager¶
It is possible to run a manager server on one machine and have clients use it from other machines (assuming that the firewalls involved allow it).
Running the following commands creates a server for a single shared queue which remote clients can access:
>>> from multiprocessing.managers import BaseManager
>>> import Queue
>>> queue = Queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue', callable=lambda:queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()
One client can access the server as follows:
>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put('hello')
Another client can also use it:
>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
'hello'
Local processes can also access that queue, using the code from above on the client to access it remotely:
>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put('local hello')
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register('get_queue', callable=lambda: queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()
16.6.2.8. 代理对象¶
A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared object is said to be the referent of the proxy. Multiple proxy objects may have the same referent.
A proxy object has methods which invoke corresponding methods of its referent (although not every method of the referent will necessarily be available through the proxy). A proxy can usually be used in most of the same ways that its referent can:
>>> from multiprocessing import Manager
>>> manager = Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print l
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print repr(l)
<ListProxy object, typeid 'list' at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]
Notice that applying str()
to a proxy will return the representation of
the referent, whereas applying repr()
will return the representation of
the proxy.
An important feature of proxy objects is that they are picklable so they can be passed between processes. Note, however, that if a proxy is sent to the corresponding manager’s process then unpickling it will produce the referent itself. This means, for example, that one shared object can contain a second:
>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print a, b
[[]] []
>>> b.append('hello')
>>> print a, b
[['hello']] ['hello']
注解
The proxy types in multiprocessing
do nothing to support comparisons
by value. So, for instance, we have:
>>> manager.list([1,2,3]) == [1,2,3]
False
One should just use a copy of the referent instead when making comparisons.
-
class
multiprocessing.managers.
BaseProxy
¶ Proxy objects are instances of subclasses of
BaseProxy
.-
_callmethod
(methodname[, args[, kwds]])¶ Call and return the result of a method of the proxy’s referent.
If
proxy
is a proxy whose referent isobj
then the expressionproxy._callmethod(methodname, args, kwds)
will evaluate the expression
getattr(obj, methodname)(*args, **kwds)
in the manager’s process.
The returned value will be a copy of the result of the call or a proxy to a new shared object – see documentation for the method_to_typeid argument of
BaseManager.register()
.If an exception is raised by the call, then is re-raised by
_callmethod()
. If some other exception is raised in the manager’s process then this is converted into aRemoteError
exception and is raised by_callmethod()
.Note in particular that an exception will be raised if methodname has not been exposed.
An example of the usage of
_callmethod()
:>>> l = manager.list(range(10)) >>> l._callmethod('__len__') 10 >>> l._callmethod('__getslice__', (2, 7)) # equiv to `l[2:7]` [2, 3, 4, 5, 6] >>> l._callmethod('__getitem__', (20,)) # equiv to `l[20]` Traceback (most recent call last): ... IndexError: list index out of range
-
_getvalue
()¶ Return a copy of the referent.
If the referent is unpicklable then this will raise an exception.
-
__repr__
()¶ Return a representation of the proxy object.
-
__str__
()¶ Return the representation of the referent.
-
16.6.2.8.1. Cleanup¶
A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager which owns its referent.
A shared object gets deleted from the manager process when there are no longer any proxies referring to it.
16.6.2.9. 进程池¶
One can create a pool of processes which will carry out tasks submitted to it
with the Pool
class.
-
class
multiprocessing.
Pool
([processes[, initializer[, initargs[, maxtasksperchild]]]])¶ A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports asynchronous results with timeouts and callbacks and has a parallel map implementation.
processes is the number of worker processes to use. If processes is
None
then the number returned bycpu_count()
is used. If initializer is notNone
then each worker process will callinitializer(*initargs)
when it starts.Note that the methods of the pool object should only be called by the process which created the pool.
2.7 新版功能: maxtasksperchild is the number of tasks a worker process can complete before it will exit and be replaced with a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild is
None
, which means worker processes will live as long as the pool.注解
Worker processes within a
Pool
typically live for the complete duration of the Pool’s work queue. A frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources held by workers is to allow a worker within a pool to complete only a set amount of work before being exiting, being cleaned up and a new process spawned to replace the old one. The maxtasksperchild argument to thePool
exposes this ability to the end user.-
apply
(func[, args[, kwds]])¶ Equivalent of the
apply()
built-in function. It blocks until the result is ready, soapply_async()
is better suited for performing work in parallel. Additionally, func is only executed in one of the workers of the pool.
-
apply_async
(func[, args[, kwds[, callback]]])¶ A variant of the
apply()
method which returns a result object.If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it (unless the call failed). callback should complete immediately since otherwise the thread which handles the results will get blocked.
-
map
(func, iterable[, chunksize])¶ A parallel equivalent of the
map()
built-in function (it supports only one iterable argument though). It blocks until the result is ready.This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.
-
map_async
(func, iterable[, chunksize[, callback]])¶ A variant of the
map()
method which returns a result object.If callback is specified then it should be a callable which accepts a single argument. When the result becomes ready callback is applied to it (unless the call failed). callback should complete immediately since otherwise the thread which handles the results will get blocked.
-
imap
(func, iterable[, chunksize])¶ An equivalent of
itertools.imap()
.The chunksize argument is the same as the one used by the
map()
method. For very long iterables using a large value for chunksize can make the job complete much faster than using the default value of1
.Also if chunksize is
1
then thenext()
method of the iterator returned by theimap()
method has an optional timeout parameter:next(timeout)
will raisemultiprocessing.TimeoutError
if the result cannot be returned within timeout seconds.
-
imap_unordered
(func, iterable[, chunksize])¶ The same as
imap()
except that the ordering of the results from the returned iterator should be considered arbitrary. (Only when there is only one worker process is the order guaranteed to be “correct”.)
-
close
()¶ Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the worker processes will exit.
-
terminate
()¶ Stops the worker processes immediately without completing outstanding work. When the pool object is garbage collected
terminate()
will be called immediately.
-
join
()¶ Wait for the worker processes to exit. One must call
close()
orterminate()
before usingjoin()
.
-
-
class
multiprocessing.pool.
AsyncResult
¶ The class of the result returned by
Pool.apply_async()
andPool.map_async()
.-
get
([timeout])¶ Return the result when it arrives. If timeout is not
None
and the result does not arrive within timeout seconds thenmultiprocessing.TimeoutError
is raised. If the remote call raised an exception then that exception will be reraised byget()
.
-
wait
([timeout])¶ Wait until the result is available or until timeout seconds pass.
-
ready
()¶ Return whether the call has completed.
-
successful
()¶ Return whether the call completed without raising an exception. Will raise
AssertionError
if the result is not ready.
-
The following example demonstrates the use of a pool:
from multiprocessing import Pool
import time
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
print result.get(timeout=1) # prints "100" unless your computer is *very* slow
print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"
it = pool.imap(f, range(10))
print it.next() # prints "0"
print it.next() # prints "1"
print it.next(timeout=1) # prints "4" unless your computer is *very* slow
result = pool.apply_async(time.sleep, (10,))
print result.get(timeout=1) # raises multiprocessing.TimeoutError
16.6.2.10. Listeners and Clients¶
Usually message passing between processes is done using queues or by using
Connection
objects returned by Pipe()
.
However, the multiprocessing.connection
module allows some extra
flexibility. It basically gives a high level message oriented API for dealing
with sockets or Windows named pipes, and also has support for digest
authentication using the hmac
module.
-
multiprocessing.connection.
deliver_challenge
(connection, authkey)¶ Send a randomly generated message to the other end of the connection and wait for a reply.
If the reply matches the digest of the message using authkey as the key then a welcome message is sent to the other end of the connection. Otherwise
AuthenticationError
is raised.
-
multiprocessing.connection.
answer_challenge
(connection, authkey)¶ Receive a message, calculate the digest of the message using authkey as the key, and then send the digest back.
If a welcome message is not received, then
AuthenticationError
is raised.
-
multiprocessing.connection.
Client
(address[, family[, authenticate[, authkey]]])¶ Attempt to set up a connection to the listener which is using address address, returning a
Connection
.The type of the connection is determined by family argument, but this can generally be omitted since it can usually be inferred from the format of address. (See Address Formats)
If authenticate is
True
or authkey is a string then digest authentication is used. The key used for authentication will be either authkey orcurrent_process().authkey)
if authkey isNone
. If authentication fails thenAuthenticationError
is raised. See Authentication keys.
-
class
multiprocessing.connection.
Listener
([address[, family[, backlog[, authenticate[, authkey]]]]])¶ A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.
address is the address to be used by the bound socket or named pipe of the listener object.
注解
If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If you require a connectable end-point, you should use ‘127.0.0.1’.
family is the type of socket (or named pipe) to use. This can be one of the strings
'AF_INET'
(for a TCP socket),'AF_UNIX'
(for a Unix domain socket) or'AF_PIPE'
(for a Windows named pipe). Of these only the first is guaranteed to be available. If family isNone
then the family is inferred from the format of address. If address is alsoNone
then a default is chosen. This default is the family which is assumed to be the fastest available. See Address Formats. Note that if family is'AF_UNIX'
and address isNone
then the socket will be created in a private temporary directory created usingtempfile.mkstemp()
.If the listener object uses a socket then backlog (1 by default) is passed to the
listen()
method of the socket once it has been bound.If authenticate is
True
(False
by default) or authkey is notNone
then digest authentication is used.If authkey is a string then it will be used as the authentication key; otherwise it must be
None
.If authkey is
None
and authenticate isTrue
thencurrent_process().authkey
is used as the authentication key. If authkey isNone
and authenticate isFalse
then no authentication is done. If authentication fails thenAuthenticationError
is raised. See Authentication keys.-
accept
()¶ Accept a connection on the bound socket or named pipe of the listener object and return a
Connection
object. If authentication is attempted and fails, thenAuthenticationError
is raised.
-
close
()¶ Close the bound socket or named pipe of the listener object. This is called automatically when the listener is garbage collected. However it is advisable to call it explicitly.
Listener objects have the following read-only properties:
-
address
¶ The address which is being used by the Listener object.
-
last_accepted
¶ The address from which the last accepted connection came. If this is unavailable then it is
None
.
-
The module defines the following exceptions:
-
exception
multiprocessing.connection.
ProcessError
¶ 所有
multiprocessing
异常的基类。
-
exception
multiprocessing.connection.
BufferTooShort
¶ 当提供的缓冲区对象太小而无法读取消息时,
Connection.recv_bytes_into()
引发的异常。
-
exception
multiprocessing.connection.
AuthenticationError
¶ 出现身份验证错误时引发。
-
exception
multiprocessing.connection.
TimeoutError
¶ 有超时的方法超时时引发。
Examples
The following server code creates a listener which uses 'secret password'
as
an authentication key. It then waits for a connection and sends some data to
the client:
from multiprocessing.connection import Listener
from array import array
address = ('localhost', 6000) # family is deduced to be 'AF_INET'
listener = Listener(address, authkey='secret password')
conn = listener.accept()
print 'connection accepted from', listener.last_accepted
conn.send([2.25, None, 'junk', float])
conn.send_bytes('hello')
conn.send_bytes(array('i', [42, 1729]))
conn.close()
listener.close()
The following code connects to the server and receives some data from the server:
from multiprocessing.connection import Client
from array import array
address = ('localhost', 6000)
conn = Client(address, authkey='secret password')
print conn.recv() # => [2.25, None, 'junk', float]
print conn.recv_bytes() # => 'hello'
arr = array('i', [0, 0, 0, 0, 0])
print conn.recv_bytes_into(arr) # => 8
print arr # => array('i', [42, 1729, 0, 0, 0])
conn.close()
16.6.2.10.1. Address Formats¶
- An
'AF_INET'
address is a tuple of the form(hostname, port)
where hostname is a string and port is an integer. - An
'AF_UNIX'
address is a string representing a filename on the filesystem. - An
'AF_PIPE'
address is a string of the form r'\\.\pipe{PipeName}'
. To useClient()
to connect to a named pipe on a remote computer called ServerName one should use an address of the formr'\ServerName\pipe{PipeName}'
instead.
- An
Note that any string beginning with two backslashes is assumed by default to be
an 'AF_PIPE'
address rather than an 'AF_UNIX'
address.
16.6.2.11. Authentication keys¶
When one uses Connection.recv()
, the
data received is automatically
unpickled. Unfortunately unpickling data from an untrusted source is a security
risk. Therefore Listener
and Client()
use the hmac
module
to provide digest authentication.
An authentication key is a string which can be thought of as a password: once a connection is established both ends will demand proof that the other knows the authentication key. (Demonstrating that both ends are using the same key does not involve sending the key over the connection.)
If authentication is requested but no authentication key is specified then the
return value of current_process().authkey
is used (see
Process
). This value will be automatically inherited by
any Process
object that the current process creates.
This means that (by default) all processes of a multi-process program will share
a single authentication key which can be used when setting up connections
between themselves.
Suitable authentication keys can also be generated by using os.urandom()
.
16.6.2.12. 日志¶
Some support for logging is available. Note, however, that the logging
package does not use process shared locks so it is possible (depending on the
handler type) for messages from different processes to get mixed up.
-
multiprocessing.
get_logger
()¶ Returns the logger used by
multiprocessing
. If necessary, a new one will be created.When first created the logger has level
logging.NOTSET
and no default handler. Messages sent to this logger will not by default propagate to the root logger.Note that on Windows child processes will only inherit the level of the parent process’s logger – any other customization of the logger will not be inherited.
-
multiprocessing.
log_to_stderr
()¶ This function performs a call to
get_logger()
but in addition to returning the logger created by get_logger, it adds a handler which sends output tosys.stderr
using format'[%(levelname)s/%(processName)s] %(message)s'
.
Below is an example session with logging turned on:
>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../listener-...'
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0
In addition to having these two logging functions, the multiprocessing also
exposes two additional logging level attributes. These are SUBWARNING
and SUBDEBUG
. The table below illustrates where theses fit in the
normal level hierarchy.
Level | Numeric value |
---|---|
SUBWARNING |
25 |
SUBDEBUG |
5 |
For a full table of logging levels, see the logging
module.
These additional logging levels are used primarily for certain debug messages
within the multiprocessing module. Below is the same example as above, except
with SUBDEBUG
enabled:
>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(multiprocessing.SUBDEBUG)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'
>>> del m
[SUBDEBUG/MainProcess] finalizer calling ...
[INFO/MainProcess] sending shutdown message to manager
[DEBUG/SyncManager-...] manager received shutdown message
[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
[INFO/SyncManager-...] manager exiting with exitcode 0
16.6.2.13. The multiprocessing.dummy
module¶
multiprocessing.dummy
replicates the API of multiprocessing
but is
no more than a wrapper around the threading
module.
16.6.3. Programming guidelines¶
There are certain guidelines and idioms which should be adhered to when using
multiprocessing
.
16.6.3.1. All platforms¶
Avoid shared state
As far as possible one should try to avoid shifting large amounts of data between processes.
It is probably best to stick to using queues or pipes for communication between processes rather than using the lower level synchronization primitives from the
threading
module.
Picklability
Ensure that the arguments to the methods of proxies are picklable.
Thread safety of proxies
Do not use a proxy object from more than one thread unless you protect it with a lock.
(There is never a problem with different processes using the same proxy.)
Joining zombie processes
On Unix when a process finishes but has not been joined it becomes a zombie. There should never be very many because each time a new process starts (oractive_children()
is called) all completed processes which have not yet been joined will be joined. Also calling a finished process’sProcess.is_alive
will join the process. Even so it is probably good practice to explicitly join all the processes that you start.
Better to inherit than pickle/unpickle
On Windows many types frommultiprocessing
need to be picklable so that child processes can use them. However, one should generally avoid sending shared objects to other processes using pipes or queues. Instead you should arrange the program so that a process which needs access to a shared resource created elsewhere can inherit it from an ancestor process.
Avoid terminating processes
Using the
Process.terminate
method to stop a process is liable to cause any shared resources (such as locks, semaphores, pipes and queues) currently being used by the process to become broken or unavailable to other processes.Therefore it is probably best to only consider using
Process.terminate
on processes which never use any shared resources.
Joining processes that use queues
Bear in mind that a process that has put items in a queue will wait before terminating until all the buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the
cancel_join_thread()
method of the queue to avoid this behaviour.)This means that whenever you use a queue you need to make sure that all items which have been put on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure that processes which have put items on the queue will terminate. Remember also that non-daemonic processes will be joined automatically.
An example which will deadlock is the following:
from multiprocessing import Process, Queue def f(q): q.put('X' * 1000000) if __name__ == '__main__': queue = Queue() p = Process(target=f, args=(queue,)) p.start() p.join() # this deadlocks obj = queue.get()A fix here would be to swap the last two lines (or simply remove the
p.join()
line).
Explicitly pass resources to child processes
On Unix a child process can make use of a shared resource created in a parent process using a global resource. However, it is better to pass the object as an argument to the constructor for the child process.
Apart from making the code (potentially) compatible with Windows this also ensures that as long as the child process is still alive the object will not be garbage collected in the parent process. This might be important if some resource is freed when the object is garbage collected in the parent process.
所以对于实例:
from multiprocessing import Process, Lock def f(): ... do something using "lock" ... if __name__ == '__main__': lock = Lock() for i in range(10): Process(target=f).start()应当重写成这样:
from multiprocessing import Process, Lock def f(l): ... do something using "l" ... if __name__ == '__main__': lock = Lock() for i in range(10): Process(target=f, args=(lock,)).start()
Beware of replacing sys.stdin
with a “file like object”
multiprocessing
originally unconditionally called:os.close(sys.stdin.fileno())in the
multiprocessing.Process._bootstrap()
method — this resulted in issues with processes-in-processes. This has been changed to:sys.stdin.close() sys.stdin = open(os.devnull)Which solves the fundamental issue of processes colliding with each other resulting in a bad file descriptor error, but introduces a potential danger to applications which replace
sys.stdin()
with a “file-like object” with output buffering. This danger is that if multiple processes callclose()
on this file-like object, it could result in the same data being flushed to the object multiple times, resulting in corruption.If you write a file-like object and implement your own caching, you can make it fork-safe by storing the pid whenever you append to the cache, and discarding the cache when the pid changes. For example:
@property def cache(self): pid = os.getpid() if pid != self._pid: self._pid = pid self._cache = [] return self._cache
16.6.3.2. Windows¶
Since Windows lacks os.fork()
it has a few extra restrictions:
More picklability
Ensure that all arguments to
Process.__init__()
are picklable. This means, in particular, that bound or unbound methods cannot be used directly as thetarget
argument on Windows — just define a function and use that instead.Also, if you subclass
Process
then make sure that instances will be picklable when theProcess.start
method is called.
Global variables
Bear in mind that if code run in a child process tries to access a global variable, then the value it sees (if any) may not be the same as the value in the parent process at the time that
Process.start
was called.However, global variables which are just module level constants cause no problems.
Safe importing of main module
Make sure that the main module can be safely imported by a new Python interpreter without causing unintended side effects (such a starting a new process).
For example, under Windows running the following module would fail with a
RuntimeError
:from multiprocessing import Process def foo(): print 'hello' p = Process(target=foo) p.start()Instead one should protect the “entry point” of the program by using
if __name__ == '__main__':
as follows:from multiprocessing import Process, freeze_support def foo(): print 'hello' if __name__ == '__main__': freeze_support() p = Process(target=foo) p.start()(The
freeze_support()
line can be omitted if the program will be run normally instead of frozen.)This allows the newly spawned Python interpreter to safely import the module and then run the module’s
foo()
function.Similar restrictions apply if a pool or manager is created in the main module.
16.6.4. 示例¶
Demonstration of how to create and use customized managers and proxies:
#
# This module shows how to use arbitrary callables with a subclass of
# `BaseManager`.
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator
##
class Foo(object):
def f(self):
print 'you called Foo.f()'
def g(self):
print 'you called Foo.g()'
def _h(self):
print 'you called Foo._h()'
# A simple generator function
def baz():
for i in xrange(10):
yield i*i
# Proxy type for generator objects
class GeneratorProxy(BaseProxy):
_exposed_ = ('next', '__next__')
def __iter__(self):
return self
def next(self):
return self._callmethod('next')
def __next__(self):
return self._callmethod('__next__')
# Function to return the operator module
def get_operator_module():
return operator
##
class MyManager(BaseManager):
pass
# register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)
# register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))
# register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)
# register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)
##
def test():
manager = MyManager()
manager.start()
print '-' * 20
f1 = manager.Foo1()
f1.f()
f1.g()
assert not hasattr(f1, '_h')
assert sorted(f1._exposed_) == sorted(['f', 'g'])
print '-' * 20
f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, 'f')
assert sorted(f2._exposed_) == sorted(['g', '_h'])
print '-' * 20
it = manager.baz()
for i in it:
print '<%d>' % i,
print
print '-' * 20
op = manager.operator()
print 'op.add(23, 45) =', op.add(23, 45)
print 'op.pow(2, 94) =', op.pow(2, 94)
print 'op.getslice(range(10), 2, 6) =', op.getslice(range(10), 2, 6)
print 'op.repeat(range(5), 3) =', op.repeat(range(5), 3)
print 'op._exposed_ =', op._exposed_
##
if __name__ == '__main__':
freeze_support()
test()
Using Pool
:
#
# A test of `multiprocessing.Pool` class
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
import multiprocessing
import time
import random
import sys
#
# Functions used by test code
#
def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % (
multiprocessing.current_process().name,
func.__name__, args, result
)
def calculatestar(args):
return calculate(*args)
def mul(a, b):
time.sleep(0.5*random.random())
return a * b
def plus(a, b):
time.sleep(0.5*random.random())
return a + b
def f(x):
return 1.0 / (x-5.0)
def pow3(x):
return x**3
def noop(x):
pass
#
# Test code
#
def test():
print 'cpu_count() = %d\n' % multiprocessing.cpu_count()
#
# Create pool
#
PROCESSES = 4
print 'Creating pool with %d processes\n' % PROCESSES
pool = multiprocessing.Pool(PROCESSES)
print 'pool = %s' % pool
print
#
# Tests
#
TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]
results = [pool.apply_async(calculate, t) for t in TASKS]
imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)
print 'Ordered results using pool.apply_async():'
for r in results:
print '\t', r.get()
print
print 'Ordered results using pool.imap():'
for x in imap_it:
print '\t', x
print
print 'Unordered results using pool.imap_unordered():'
for x in imap_unordered_it:
print '\t', x
print
print 'Ordered results using pool.map() --- will block till complete:'
for x in pool.map(calculatestar, TASKS):
print '\t', x
print
#
# Simple benchmarks
#
N = 100000
print 'def pow3(x): return x**3'
t = time.time()
A = map(pow3, xrange(N))
print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \
(N, time.time() - t)
t = time.time()
B = pool.map(pow3, xrange(N))
print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \
(N, time.time() - t)
t = time.time()
C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \
' seconds' % (N, N//8, time.time() - t)
assert A == B == C, (len(A), len(B), len(C))
print
L = [None] * 1000000
print 'def noop(x): pass'
print 'L = [None] * 1000000'
t = time.time()
A = map(noop, L)
print '\tmap(noop, L):\n\t\t%s seconds' % \
(time.time() - t)
t = time.time()
B = pool.map(noop, L)
print '\tpool.map(noop, L):\n\t\t%s seconds' % \
(time.time() - t)
t = time.time()
C = list(pool.imap(noop, L, chunksize=len(L)//8))
print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \
(len(L)//8, time.time() - t)
assert A == B == C, (len(A), len(B), len(C))
print
del A, B, C, L
#
# Test error handling
#
print 'Testing error handling:'
try:
print pool.apply(f, (5,))
except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from pool.apply()'
else:
raise AssertionError('expected ZeroDivisionError')
try:
print pool.map(f, range(10))
except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from pool.map()'
else:
raise AssertionError('expected ZeroDivisionError')
try:
print list(pool.imap(f, range(10)))
except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from list(pool.imap())'
else:
raise AssertionError('expected ZeroDivisionError')
it = pool.imap(f, range(10))
for i in range(10):
try:
x = it.next()
except ZeroDivisionError:
if i == 5:
pass
except StopIteration:
break
else:
if i == 5:
raise AssertionError('expected ZeroDivisionError')
assert i == 9
print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
print
#
# Testing timeouts
#
print 'Testing ApplyResult.get() with timeout:',
res = pool.apply_async(calculate, TASKS[0])
while 1:
sys.stdout.flush()
try:
sys.stdout.write('\n\t%s' % res.get(0.02))
break
except multiprocessing.TimeoutError:
sys.stdout.write('.')
print
print
print 'Testing IMapIterator.next() with timeout:',
it = pool.imap(calculatestar, TASKS)
while 1:
sys.stdout.flush()
try:
sys.stdout.write('\n\t%s' % it.next(0.02))
except StopIteration:
break
except multiprocessing.TimeoutError:
sys.stdout.write('.')
print
print
#
# Testing callback
#
print 'Testing callback:'
A = []
B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
r = pool.apply_async(mul, (7, 8), callback=A.append)
r.wait()
r = pool.map_async(pow3, range(10), callback=A.extend)
r.wait()
if A == B:
print '\tcallbacks succeeded\n'
else:
print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)
#
# Check there are no outstanding tasks
#
assert not pool._cache, 'cache = %r' % pool._cache
#
# Check close() methods
#
print 'Testing close():'
for worker in pool._pool:
assert worker.is_alive()
result = pool.apply_async(time.sleep, [0.5])
pool.close()
pool.join()
assert result.get() is None
for worker in pool._pool:
assert not worker.is_alive()
print '\tclose() succeeded\n'
#
# Check terminate() method
#
print 'Testing terminate():'
pool = multiprocessing.Pool(2)
DELTA = 0.1
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
pool.terminate()
pool.join()
for worker in pool._pool:
assert not worker.is_alive()
print '\tterminate() succeeded\n'
#
# Check garbage collection
#
print 'Testing garbage collection:'
pool = multiprocessing.Pool(2)
DELTA = 0.1
processes = pool._pool
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
results = pool = None
time.sleep(DELTA * 2)
for worker in processes:
assert not worker.is_alive()
print '\tgarbage collection succeeded\n'
if __name__ == '__main__':
multiprocessing.freeze_support()
assert len(sys.argv) in (1, 2)
if len(sys.argv) == 1 or sys.argv[1] == 'processes':
print ' Using processes '.center(79, '-')
elif sys.argv[1] == 'threads':
print ' Using threads '.center(79, '-')
import multiprocessing.dummy as multiprocessing
else:
print 'Usage:\n\t%s [processes | threads]' % sys.argv[0]
raise SystemExit(2)
test()
Synchronization types like locks, conditions and queues:
#
# A test file for the `multiprocessing` package
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
import time, sys, random
from Queue import Empty
import multiprocessing # may get overwritten
#### TEST_VALUE
def value_func(running, mutex):
random.seed()
time.sleep(random.random()*4)
mutex.acquire()
print '\n\t\t\t' + str(multiprocessing.current_process()) + ' has finished'
running.value -= 1
mutex.release()
def test_value():
TASKS = 10
running = multiprocessing.Value('i', TASKS)
mutex = multiprocessing.Lock()
for i in range(TASKS):
p = multiprocessing.Process(target=value_func, args=(running, mutex))
p.start()
while running.value > 0:
time.sleep(0.08)
mutex.acquire()
print running.value,
sys.stdout.flush()
mutex.release()
print
print 'No more running processes'
#### TEST_QUEUE
def queue_func(queue):
for i in range(30):
time.sleep(0.5 * random.random())
queue.put(i*i)
queue.put('STOP')
def test_queue():
q = multiprocessing.Queue()
p = multiprocessing.Process(target=queue_func, args=(q,))
p.start()
o = None
while o != 'STOP':
try:
o = q.get(timeout=0.3)
print o,
sys.stdout.flush()
except Empty:
print 'TIMEOUT'
print
#### TEST_CONDITION
def condition_func(cond):
cond.acquire()
print '\t' + str(cond)
time.sleep(2)
print '\tchild is notifying'
print '\t' + str(cond)
cond.notify()
cond.release()
def test_condition():
cond = multiprocessing.Condition()
p = multiprocessing.Process(target=condition_func, args=(cond,))
print cond
cond.acquire()
print cond
cond.acquire()
print cond
p.start()
print 'main is waiting'
cond.wait()
print 'main has woken up'
print cond
cond.release()
print cond
cond.release()
p.join()
print cond
#### TEST_SEMAPHORE
def semaphore_func(sema, mutex, running):
sema.acquire()
mutex.acquire()
running.value += 1
print running.value, 'tasks are running'
mutex.release()
random.seed()
time.sleep(random.random()*2)
mutex.acquire()
running.value -= 1
print '%s has finished' % multiprocessing.current_process()
mutex.release()
sema.release()
def test_semaphore():
sema = multiprocessing.Semaphore(3)
mutex = multiprocessing.RLock()
running = multiprocessing.Value('i', 0)
processes = [
multiprocessing.Process(target=semaphore_func,
args=(sema, mutex, running))
for i in range(10)
]
for p in processes:
p.start()
for p in processes:
p.join()
#### TEST_JOIN_TIMEOUT
def join_timeout_func():
print '\tchild sleeping'
time.sleep(5.5)
print '\n\tchild terminating'
def test_join_timeout():
p = multiprocessing.Process(target=join_timeout_func)
p.start()
print 'waiting for process to finish'
while 1:
p.join(timeout=1)
if not p.is_alive():
break
print '.',
sys.stdout.flush()
#### TEST_EVENT
def event_func(event):
print '\t%r is waiting' % multiprocessing.current_process()
event.wait()
print '\t%r has woken up' % multiprocessing.current_process()
def test_event():
event = multiprocessing.Event()
processes = [multiprocessing.Process(target=event_func, args=(event,))
for i in range(5)]
for p in processes:
p.start()
print 'main is sleeping'
time.sleep(2)
print 'main is setting event'
event.set()
for p in processes:
p.join()
#### TEST_SHAREDVALUES
def sharedvalues_func(values, arrays, shared_values, shared_arrays):
for i in range(len(values)):
v = values[i][1]
sv = shared_values[i].value
assert v == sv
for i in range(len(values)):
a = arrays[i][1]
sa = list(shared_arrays[i][:])
assert a == sa
print 'Tests passed'
def test_sharedvalues():
values = [
('i', 10),
('h', -2),
('d', 1.25)
]
arrays = [
('i', range(100)),
('d', [0.25 * i for i in range(100)]),
('H', range(1000))
]
shared_values = [multiprocessing.Value(id, v) for id, v in values]
shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]
p = multiprocessing.Process(
target=sharedvalues_func,
args=(values, arrays, shared_values, shared_arrays)
)
p.start()
p.join()
assert p.exitcode == 0
####
def test(namespace=multiprocessing):
global multiprocessing
multiprocessing = namespace
for func in [ test_value, test_queue, test_condition,
test_semaphore, test_join_timeout, test_event,
test_sharedvalues ]:
print '\n\t######## %s\n' % func.__name__
func()
ignore = multiprocessing.active_children() # cleanup any old processes
if hasattr(multiprocessing, '_debug_info'):
info = multiprocessing._debug_info()
if info:
print info
raise ValueError('there should be no positive refcounts left')
if __name__ == '__main__':
multiprocessing.freeze_support()
assert len(sys.argv) in (1, 2)
if len(sys.argv) == 1 or sys.argv[1] == 'processes':
print ' Using processes '.center(79, '-')
namespace = multiprocessing
elif sys.argv[1] == 'manager':
print ' Using processes and a manager '.center(79, '-')
namespace = multiprocessing.Manager()
namespace.Process = multiprocessing.Process
namespace.current_process = multiprocessing.current_process
namespace.active_children = multiprocessing.active_children
elif sys.argv[1] == 'threads':
print ' Using threads '.center(79, '-')
import multiprocessing.dummy as namespace
else:
print 'Usage:\n\t%s [processes | manager | threads]' % sys.argv[0]
raise SystemExit(2)
test(namespace)
An example showing how to use queues to feed tasks to a collection of worker processes and collect the results:
#
# Simple example which uses a pool of workers to carry out some tasks.
#
# Notice that the results will probably not come out of the output
# queue in the same in the same order as the corresponding tasks were
# put on the input queue. If it is important to get the results back
# in the original order then consider using `Pool.map()` or
# `Pool.imap()` (which will save on the amount of code needed anyway).
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
import time
import random
from multiprocessing import Process, Queue, current_process, freeze_support
#
# Function run by worker processes
#
def worker(input, output):
for func, args in iter(input.get, 'STOP'):
result = calculate(func, args)
output.put(result)
#
# Function used to calculate result
#
def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % \
(current_process().name, func.__name__, args, result)
#
# Functions referenced by tasks
#
def mul(a, b):
time.sleep(0.5*random.random())
return a * b
def plus(a, b):
time.sleep(0.5*random.random())
return a + b
#
#
#
def test():
NUMBER_OF_PROCESSES = 4
TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]
# Create queues
task_queue = Queue()
done_queue = Queue()
# Submit tasks
for task in TASKS1:
task_queue.put(task)
# Start worker processes
for i in range(NUMBER_OF_PROCESSES):
Process(target=worker, args=(task_queue, done_queue)).start()
# Get and print results
print 'Unordered results:'
for i in range(len(TASKS1)):
print '\t', done_queue.get()
# Add more tasks using `put()`
for task in TASKS2:
task_queue.put(task)
# Get and print some more results
for i in range(len(TASKS2)):
print '\t', done_queue.get()
# Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):
task_queue.put('STOP')
if __name__ == '__main__':
freeze_support()
test()
An example of how a pool of worker processes can each run a
SimpleHTTPServer.HttpServer
instance while sharing a single listening
socket.
#
# Example where a pool of http servers share a single listening socket
#
# On Windows this module depends on the ability to pickle a socket
# object so that the worker processes can inherit a copy of the server
# object. (We import `multiprocessing.reduction` to enable this pickling.)
#
# Not sure if we should synchronize access to `socket.accept()` method by
# using a process-shared lock -- does not seem to be necessary.
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
import os
import sys
from multiprocessing import Process, current_process, freeze_support
from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler
if sys.platform == 'win32':
import multiprocessing.reduction # make sockets pickable/inheritable
def note(format, *args):
sys.stderr.write('[%s]\t%s\n' % (current_process().name, format%args))
class RequestHandler(SimpleHTTPRequestHandler):
# we override log_message() to show which process is handling the request
def log_message(self, format, *args):
note(format, *args)
def serve_forever(server):
note('starting server')
try:
server.serve_forever()
except KeyboardInterrupt:
pass
def runpool(address, number_of_processes):
# create a single server object -- children will each inherit a copy
server = HTTPServer(address, RequestHandler)
# create child processes to act as workers
for i in range(number_of_processes-1):
Process(target=serve_forever, args=(server,)).start()
# main process also acts as a worker
serve_forever(server)
def test():
DIR = os.path.join(os.path.dirname(__file__), '..')
ADDRESS = ('localhost', 8000)
NUMBER_OF_PROCESSES = 4
print 'Serving at http://%s:%d using %d worker processes' % \
(ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)
print 'To exit press Ctrl-' + ['C', 'Break'][sys.platform=='win32']
os.chdir(DIR)
runpool(ADDRESS, NUMBER_OF_PROCESSES)
if __name__ == '__main__':
freeze_support()
test()
Some simple benchmarks comparing multiprocessing
with threading
:
#
# Simple benchmarks for the multiprocessing package
#
# Copyright (c) 2006-2008, R Oudkerk
# All rights reserved.
#
import time, sys, multiprocessing, threading, Queue, gc
if sys.platform == 'win32':
_timer = time.clock
else:
_timer = time.time
delta = 1
#### TEST_QUEUESPEED
def queuespeed_func(q, c, iterations):
a = '0' * 256
c.acquire()
c.notify()
c.release()
for i in xrange(iterations):
q.put(a)
q.put('STOP')
def test_queuespeed(Process, q, c):
elapsed = 0
iterations = 1
while elapsed < delta:
iterations *= 2
p = Process(target=queuespeed_func, args=(q, c, iterations))
c.acquire()
p.start()
c.wait()
c.release()
result = None
t = _timer()
while result != 'STOP':
result = q.get()
elapsed = _timer() - t
p.join()
print iterations, 'objects passed through the queue in', elapsed, 'seconds'
print 'average number/sec:', iterations/elapsed
#### TEST_PIPESPEED
def pipe_func(c, cond, iterations):
a = '0' * 256
cond.acquire()
cond.notify()
cond.release()
for i in xrange(iterations):
c.send(a)
c.send('STOP')
def test_pipespeed():
c, d = multiprocessing.Pipe()
cond = multiprocessing.Condition()
elapsed = 0
iterations = 1
while elapsed < delta:
iterations *= 2
p = multiprocessing.Process(target=pipe_func,
args=(d, cond, iterations))
cond.acquire()
p.start()
cond.wait()
cond.release()
result = None
t = _timer()
while result != 'STOP':
result = c.recv()
elapsed = _timer() - t
p.join()
print iterations, 'objects passed through connection in',elapsed,'seconds'
print 'average number/sec:', iterations/elapsed
#### TEST_SEQSPEED
def test_seqspeed(seq):
elapsed = 0
iterations = 1
while elapsed < delta:
iterations *= 2
t = _timer()
for i in xrange(iterations):
a = seq[5]
elapsed = _timer()-t
print iterations, 'iterations in', elapsed, 'seconds'
print 'average number/sec:', iterations/elapsed
#### TEST_LOCK
def test_lockspeed(l):
elapsed = 0
iterations = 1
while elapsed < delta:
iterations *= 2
t = _timer()
for i in xrange(iterations):
l.acquire()
l.release()
elapsed = _timer()-t
print iterations, 'iterations in', elapsed, 'seconds'
print 'average number/sec:', iterations/elapsed
#### TEST_CONDITION
def conditionspeed_func(c, N):
c.acquire()
c.notify()
for i in xrange(N):
c.wait()
c.notify()
c.release()
def test_conditionspeed(Process, c):
elapsed = 0
iterations = 1
while elapsed < delta:
iterations *= 2
c.acquire()
p = Process(target=conditionspeed_func, args=(c, iterations))
p.start()
c.wait()
t = _timer()
for i in xrange(iterations):
c.notify()
c.wait()
elapsed = _timer()-t
c.release()
p.join()
print iterations * 2, 'waits in', elapsed, 'seconds'
print 'average number/sec:', iterations * 2 / elapsed
####
def test():
manager = multiprocessing.Manager()
gc.disable()
print '\n\t######## testing Queue.Queue\n'
test_queuespeed(threading.Thread, Queue.Queue(),
threading.Condition())
print '\n\t######## testing multiprocessing.Queue\n'
test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),
multiprocessing.Condition())
print '\n\t######## testing Queue managed by server process\n'
test_queuespeed(multiprocessing.Process, manager.Queue(),
manager.Condition())
print '\n\t######## testing multiprocessing.Pipe\n'
test_pipespeed()
print
print '\n\t######## testing list\n'
test_seqspeed(range(10))
print '\n\t######## testing list managed by server process\n'
test_seqspeed(manager.list(range(10)))
print '\n\t######## testing Array("i", ..., lock=False)\n'
test_seqspeed(multiprocessing.Array('i', range(10), lock=False))
print '\n\t######## testing Array("i", ..., lock=True)\n'
test_seqspeed(multiprocessing.Array('i', range(10), lock=True))
print
print '\n\t######## testing threading.Lock\n'
test_lockspeed(threading.Lock())
print '\n\t######## testing threading.RLock\n'
test_lockspeed(threading.RLock())
print '\n\t######## testing multiprocessing.Lock\n'
test_lockspeed(multiprocessing.Lock())
print '\n\t######## testing multiprocessing.RLock\n'
test_lockspeed(multiprocessing.RLock())
print '\n\t######## testing lock managed by server process\n'
test_lockspeed(manager.Lock())
print '\n\t######## testing rlock managed by server process\n'
test_lockspeed(manager.RLock())
print
print '\n\t######## testing threading.Condition\n'
test_conditionspeed(threading.Thread, threading.Condition())
print '\n\t######## testing multiprocessing.Condition\n'
test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
print '\n\t######## testing condition managed by a server process\n'
test_conditionspeed(multiprocessing.Process, manager.Condition())
gc.enable()
if __name__ == '__main__':
multiprocessing.freeze_support()
test()