GeoDjango uses and/or provides interfaces for the following open source geospatial libraries:
Program | Description | Required | Supported Versions |
---|---|---|---|
GEOS | Geometry Engine Open Source | Yes | 3.6, 3.5, 3.4 |
PROJ.4 | Cartographic Projections library | Yes (PostgreSQL and SQLite only) | 4.9, 4.8, 4.7, 4.6, 4.5, 4.4 |
GDAL | Geospatial Data Abstraction Library | Yes | 2.2, 2.1, 2.0, 1.11, 1.10, 1.9 |
GeoIP | IP-based geolocation library | No | 2 |
PostGIS | Spatial extensions for PostgreSQL | Yes (PostgreSQL only) | 2.4, 2.3, 2.2, 2.1 |
SpatiaLite | Spatial extensions for SQLite | Yes (SQLite only) | 4.3, 4.2, 4.1 |
Note that older or more recent versions of these libraries may also work totally fine with GeoDjango. Your mileage may vary.
Note
The GeoDjango interfaces to GEOS, GDAL, and GeoIP may be used
independently of Django. In other words, no database or settings file
required – just import them as normal from django.contrib.gis
.
On Debian/Ubuntu, you are advised to install the following packages which will install, directly or by dependency, the required geospatial libraries:
$ sudo apt-get install binutils libproj-dev gdal-bin
Optional packages to consider:
libgeoip1
: for GeoIP supportpython-gdal
for GDAL’s own Python bindings – includes interfaces for raster manipulationPlease also consult platform-specific instructions if you are on macOS or Windows.
When installing from source on UNIX and GNU/Linux systems, please follow the installation instructions carefully, and install the libraries in the given order. If using MySQL or Oracle as the spatial database, only GEOS is required.
Note
On Linux platforms, it may be necessary to run the ldconfig
command
after installing each library. For example:
$ sudo make install
$ sudo ldconfig
Note
macOS users must install Xcode in order to compile software from source.
GEOS is a C++ library for performing geometric operations, and is the default
internal geometry representation used by GeoDjango (it’s behind the “lazy”
geometries). Specifically, the C API library is called (e.g., libgeos_c.so
)
directly from Python using ctypes.
First, download GEOS from the GEOS website and untar the source archive:
$ wget http://download.osgeo.org/geos/geos-X.Y.Z.tar.bz2
$ tar xjf geos-X.Y.Z.tar.bz2
Next, change into the directory where GEOS was unpacked, run the configure script, compile, and install:
$ cd geos-X.Y.Z
$ ./configure
$ make
$ sudo make install
$ cd ..
When GeoDjango can’t find GEOS, this error is raised:
ImportError: Could not find the GEOS library (tried "geos_c"). Try setting GEOS_LIBRARY_PATH in your settings.
The most common solution is to properly configure your Library environment settings or set GEOS_LIBRARY_PATH in your settings.
If using a binary package of GEOS (e.g., on Ubuntu), you may need to Install binutils.
GEOS_LIBRARY_PATH
¶If your GEOS library is in a non-standard location, or you don’t want to
modify the system’s library path then the GEOS_LIBRARY_PATH
setting may be added to your Django settings file with the full path to the
GEOS C library. For example:
GEOS_LIBRARY_PATH = '/home/bob/local/lib/libgeos_c.so'
Note
The setting must be the full path to the C shared library; in
other words you want to use libgeos_c.so
, not libgeos.so
.
PROJ.4 is a library for converting geospatial data to different coordinate reference systems.
First, download the PROJ.4 source code and datum shifting files [1]:
$ wget http://download.osgeo.org/proj/proj-X.Y.Z.tar.gz
$ wget http://download.osgeo.org/proj/proj-datumgrid-X.Y.tar.gz
Next, untar the source code archive, and extract the datum shifting files in the
nad
subdirectory. This must be done prior to configuration:
$ tar xzf proj-X.Y.Z.tar.gz
$ cd proj-X.Y.Z/nad
$ tar xzf ../../proj-datumgrid-X.Y.tar.gz
$ cd ..
Finally, configure, make and install PROJ.4:
$ ./configure
$ make
$ sudo make install
$ cd ..
GDAL is an excellent open source geospatial library that has support for reading most vector and raster spatial data formats. Currently, GeoDjango only supports GDAL’s vector data capabilities [2]. GEOS and PROJ.4 should be installed prior to building GDAL.
First download the latest GDAL release version and untar the archive:
$ wget http://download.osgeo.org/gdal/X.Y.Z/gdal-X.Y.Z.tar.gz
$ tar xzf gdal-X.Y.Z.tar.gz
$ cd gdal-X.Y.Z
Configure, make and install:
$ ./configure
$ make # Go get some coffee, this takes a while.
$ sudo make install
$ cd ..
Note
Because GeoDjango has its own Python interface, the preceding instructions
do not build GDAL’s own Python bindings. The bindings may be built by
adding the --with-python
flag when running configure
. See
GDAL/OGR In Python for more information on GDAL’s bindings.
If you have any problems, please see the troubleshooting section below for suggestions and solutions.
When GeoDjango can’t find the GDAL library, configure your Library environment settings or set GDAL_LIBRARY_PATH in your settings.
GDAL_LIBRARY_PATH
¶If your GDAL library is in a non-standard location, or you don’t want to
modify the system’s library path then the GDAL_LIBRARY_PATH
setting may be added to your Django settings file with the full path to
the GDAL library. For example:
GDAL_LIBRARY_PATH = '/home/sue/local/lib/libgdal.so'
Footnotes
[1] | The datum shifting files are needed for converting data to and from
certain projections.
For example, the PROJ.4 string for the Google projection (900913 or 3857) requires the
null grid file only included in the extra datum shifting files.
It is easier to install the shifting files now, then to have debug a
problem caused by their absence later. |
[2] | Specifically, GeoDjango provides support for the OGR library, a component of GDAL. |
Jul 24, 2018